排列(优限法、捆绑法、插空法的运用%20)高品质版课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《排列(优限法、捆绑法、插空法的运用%20)高品质版课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列 优限法 捆绑 插空 运用 20 品质 课件
- 资源描述:
-
1、排列的简单应用排列的简单应用制作:薛本祥制作:薛本祥(安徽凤阳中学)(安徽凤阳中学)时间:时间:2004年年4月月26日日排列的简单应用排列的简单应用 目的:目的:理解掌握含有特殊限制条件的排队问题的解决方法,进一步培养分析问题、解决问题的能力 重点:重点:优限法、捆绑法、插空法的运用 一、【概念复习】一、【概念复习】:1排列的定义排列的定义,理解排列定义需要注意的几点问题;从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列一个排列.2排列数的定义,排列数的计算公式排列数的定义,排列数的计算公式)1()2
2、)(1(mnnnnAmn)!(!mnnAmn3练习:练习:7位同学站成一排,共有多少种不同位同学站成一排,共有多少种不同的排法?的排法?解:问题可以看作:7个元素的全排列A775040 7位同学站成一排,其中甲站在中间的位置,位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列A66=720 7位同学站成一排,其中甲不站在首位,共有多位同学站成一排,其中甲不站在首位,共有多少种不同的排法?少种不同的排法?解一:甲站其余六个位置之一有A61种,其余6人全排列有A66 种,共有A61 A66=4320。解二:从其他6人中先选出一
3、人站首位,有A61,剩下6人(含甲)全排列,有A66,共有A61 A66=4320。解三:7人全排列有A77,甲在首位的有A66,所以共有 A77-A66=7 A66-A66=4320。二、新课二、新课:例:例:7位同学站成一排位同学站成一排甲、乙只能站在两端的排法共有多少种?甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步 甲、乙站在两端有A22种;第二步 余下的5名同学进行全排列有A55种 则共有A22 A55=240种排列方法甲乙乙甲 abcde ebdcaA55A55A22A22甲、乙不能站在排头和排尾的排法共有多少种?甲、乙不能站在排头和排尾的排法共有多少种?解法一:
4、第一步 从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有A52种方法;第二步 从余下的5位同学中选5位进行排列(全排列)有A55种方法,所以一共有A52 A55 2400种排列方法解法二:若甲站在排头有A66种方法;若乙站在排尾有A66种方法;若甲站在排头且乙站在排尾则有A55种方法所以甲不能站在排头,乙不能排在排尾的排法共有 A77 2 A66 A55=2400种小小 结一:结一:对于“在在”与“不在不在”等有特殊元素特殊元素或特殊位置或特殊位置的排列问题,通常是先排特殊元素或特殊先排特殊元素或特殊位置位置,称为优先处理特殊元素(位置)法优先处理特殊元素(位置)法(优限法优限法)。
5、优限法 甲、乙两同学必须甲、乙两同学必须相邻相邻的排法共有多少种?的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有A66种方法;再将甲、乙两个同学“松绑”进行排列有A22种方法所以这样的排法一共有A66 A22 1440种拓展:拓展:甲、乙和丙三个同学都相邻的排法共有多少种?甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有A55A33 720种解法一:将甲、乙两同学“捆绑捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有A52种方法;将剩下的4个
6、元素进行全排列有A44种方法;最后将甲、乙两个同学“松绑松绑”进行排列有A22种方法所以这样的排法一共有A52 A44 A22 960种方法甲、乙两同学必须相邻,而且丙不能站在排头和排尾甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?的排法有多少种?解法二:解法二:将甲、乙两同学将甲、乙两同学“捆绑捆绑”在一起看成一个元素,在一起看成一个元素,此时一共有此时一共有6个元素,若丙站在排头或排尾有个元素,若丙站在排头或排尾有2A55种方法,种方法,所 以 丙 不 能 站 在 排 头 和 排 尾 的 排 法 有所 以 丙 不 能 站 在 排 头 和 排 尾 的 排 法 有(A66 -2
7、A55)A22=960种方法种方法 小结二:小结二:对于相邻问题,常对于相邻问题,常用用“捆 绑 法捆 绑 法”(先 捆 后先 捆 后松松)解法三解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有A41种方法,再将其余的5个元素进行全排列共有A55种方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有A41 A55 A22 960种方法甲、乙两同学甲、乙两同学不能相邻不能相邻的排法共有多少种?的排法共有多少种?解法一:(排除法)A77-A66 A22=3600 解法二:(插空法)先将其余五个同学排好有A55种方法,
8、此时他们留下六个位置(就称为“空空”),再将甲、乙同学分别插入这六个位置(空)有A62种方法,cbade所以一共有A55 A62=3600种方法乙乙甲甲拓展:拓展:甲、乙和丙三个同学都不能相邻不能相邻的排法共有多少种?解:先将其余四个其余四个同学排好有A44种方法,此时他们留下五个“空空”,再将甲、乙和丙三个同学分别插入这五个“空”有A53种方法,所以一共有A44 A53 1440种小结三小结三:对于不相邻不相邻问题,常用“插 空 法插 空 法”(特 殊 元 素特 殊 元 素考考虑虑)三、练习:三名女生和五名三名女生和五名男生排成一排,男生排成一排,如果女生全排在一起,有多少种不同排法?如果女
展开阅读全文