数据挖掘和知识管理课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数据挖掘和知识管理课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 挖掘 知识 管理 课件
- 资源描述:
-
1、人类已进入一个崭新的信息时代 数据库中存储的数据量急剧膨胀 需要从海量数据库和大量繁杂信息中提取有价值的知识,进一步提高信息的利用率产生了一个新的研究方向:基于数据库的知识发现(Knowledge Discovery in Database),以及相应的数据挖掘(Data Mining)理论和技术的研究。随着大量数据库的建立和海量数据的不断涌现,必然提出对强有力的数据分析工具的迫切需求。但现实情况往往是“数据十分丰富,而信息相当贫乏。”快速增长的海量数据收集、存放在大型数据库中,没有强有力的工具,理解它们已经远远超出人的能力。因此,有人称之为:“数据坟墓”。由于专家系统工具过分依赖用户或专家人
2、工地将知识输入知识库中,而且分析结果往往带有偏差和错误,再加上耗时、费用高,故不可行。数据矿山数据矿山信息金块信息金块数据挖掘工具数据挖掘工具数据挖掘是从大量数据中提取或“挖掘”知识。与数据挖掘类似但稍有不同含义的术语有:从数据库中发现知识(Knowledge Discovery from/in Database,KDD)知识提取(Knowledge extract)数据/模式分析(Data/Model analysis)。数据考古 数据捕捞技术上的定义商业角度的定义数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知
3、道的、但又是潜在有用的信息和知识的过程。数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。啤酒与尿布啤酒与尿布上海海关走私上海海关走私机票销售机票销售手机手机VIPVIP客户客户知识 目标数据 已预处理 数据 变换后 数据 模式 数据 筛选 预处理 变换 数据挖掘 解释/评价 1.数据准备:了解数据挖掘应用领域的有关情况。包括熟悉相关的背景知识,搞清用户需求。2.数据选取:数据选取的目的是确定目标数据,根据用户的需要从原始数据库中选取相关数据或样本。在此过程中,将利用一些数据库操作对数据库进行相关
4、处理。3.数据预处理:对步骤2中选出的数据进行再处理,检查数据的完整性及数据一致性,消除噪声,滤除与数据挖掘无关的冗余数据,根据时间序列和已知的变化情况,利用统计等方法填充丢失的数据。4.数据变换:根据知识发现的任务对经过预处理的数据进行再处理,主要是通过投影或利用数据库的其他操作减少数据量。5.确定数据挖掘目标:根据用户的要求,确定数据挖掘要发现的知识类型。因为对数据挖掘的不同要求会在具体的知识发现过程中采用不同的知识发现算法。如分类、总结、关联规则、聚类等。6.选择算法:根据确定的任务选择合适的知识发现算法,包括选取合适的模型和参数。7.数据挖掘:这是整个过程中很重要的一个步骤。运用前面选
5、择的算法,从数据库中提取用户感兴趣的知识,并以一定的方式表示出来(如产生式规则等)是数据挖掘的目的。8.模式解释:对在数据挖掘步骤中发现的模式(知识)进行解释。经过用户或机器评估后,可能会发现这些模式中存在冗余或无关的模式,此时应该将其剔除。如果模式不能满足用户的要求,就需要返回到前面的某些处理步骤中反复提取。9.知识评价:将发现的知识以用户能了解的方式呈现给用户。v在上述步骤中,数据挖掘占据非常重要的地位,它主要是利用某些特定的知识发现算法,在一定的运算效率范围内,从数据中发现出有关知识,决定了整个KDD过程的效果与效率。数据挖掘任务有两类:第一类是预测性挖掘任务预测性挖掘任务:在当前数据上
展开阅读全文