数学建模第十章统计回归模型课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学建模第十章统计回归模型课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 第十 统计 回归 模型 课件
- 资源描述:
-
1、第十章第十章 统计回归模型统计回归模型10.1 牙膏的销售量牙膏的销售量10.2 软件开发人员的薪金软件开发人员的薪金统计回归模型是用统计回归模型是用统计分析方法建立的最常用的一类统计分析方法建立的最常用的一类模型模型 数学建模的基本方法数学建模的基本方法机理分析机理分析测试分析测试分析通过对数据的统计分析,找出与数据拟合最好的模型通过对数据的统计分析,找出与数据拟合最好的模型 不涉及回归分析的数学原理和方法不涉及回归分析的数学原理和方法 通过实例讨论如何选择不同类型的模型通过实例讨论如何选择不同类型的模型 对软件得到的结果进行分析,对模型进行改进对软件得到的结果进行分析,对模型进行改进 由于
2、客观事物内部规律的复杂及人们认识程度的限制由于客观事物内部规律的复杂及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型。律的数学模型。10.1 牙膏的销售量牙膏的销售量 问问题题建立牙膏销售量与价格、广告投入之间的模型建立牙膏销售量与价格、广告投入之间的模型 预测在不同价格和广告费用下的牙膏销售量预测在不同价格和广告费用下的牙膏销售量 收集了收集了30个销售周期本公司牙膏销售量、价格、个销售周期本公司牙膏销售量、价格、广告费用,及同期其它厂家同类牙膏的平均售价广告费用,及同期其它厂家同类牙膏的平均售价 9.260.55
3、6.804.253.70307.930.055.803.853.80298.510.256.754.003.7527.38-0.055.503.803.851销售量销售量(百万支百万支)价格差价格差(元)(元)广告费用广告费用(百万元百万元)其它厂家其它厂家价格价格(元元)本公司价本公司价格格(元元)销售销售周期周期基本模型基本模型y 公司牙膏销售量公司牙膏销售量x1其它厂家与本公司其它厂家与本公司价格差价格差x2公司广告费用公司广告费用110 xy222210 xxy55.566.577.577.588.599.510 x2y-0.200.20.40.677.588.599.510 x1y2
4、2322110 xxxyx1,x2解释变量解释变量(回归变量回归变量,自变量自变量)y被解释变量(因变量)被解释变量(因变量)0,1,2,3 回归系数回归系数 随机随机误差(应是误差(应是均值为均值为零的正态分布随机变量)零的正态分布随机变量)MATLAB 统计工具箱统计工具箱 模型求解模型求解b,bint,r,rint,stats=regress(y,x,alpha)输入输入 x=n 4数数据矩阵据矩阵,第第1列为全列为全1向量向量1 2221xxxalpha(置信置信水平水平,0.05)22322110 xxxyb 的的估计值估计值 bintb的置信区间的置信区间 r 残差向量残差向量y-
5、xb rintr的置信区间的置信区间 Stats检验统计量检验统计量 R2,F,p yn维数据向量维数据向量输出输出 由数据由数据 y,x1,x2估计估计 参数参数参数估计值参数估计值置信区间置信区间17.32445.7282 28.92061.30700.6829 1.9311-3.6956-7.4989 0.1077 0.34860.0379 0.6594 R2=0.9054 F=82.9409 p=0.0000 0 1 2 3结果分析结果分析y的的90.54%可由模型确定可由模型确定 参数参数参数估计值参数估计值置信区间置信区间17.32445.7282 28.92061.30700.6
6、829 1.9311-3.6956-7.4989 0.1077 0.34860.0379 0.6594 R2=0.9054 F=82.9409 p=0.0000 0 1 2 322322110 xxxyF远超过远超过F检验的临界值检验的临界值 p远小于远小于=0.05 2的置信区间包含零点的置信区间包含零点(右端点距零点很近右端点距零点很近)x2对因变量对因变量y 的的影响不太显著影响不太显著x22项显著项显著 可将可将x2保留在模型中保留在模型中 模型从整体上看成立模型从整体上看成立22322110 xxxy销售量预测销售量预测 价格差价格差x1=其它厂家其它厂家价格价格x3-本公司本公司价
7、格价格x4估计估计x3调整调整x4控制价格差控制价格差x1=0.2元,投入广告费元,投入广告费x2=650万元万元销售量预测区间为销售量预测区间为 7.8230,8.7636(置信度(置信度95%)上限用作库存管理的目标值上限用作库存管理的目标值 下限用来把握公司的现金流下限用来把握公司的现金流 若估计若估计x3=3.9,设定,设定x4=3.7,则可以,则可以95%的把握的把握知道销售额在知道销售额在 7.8320 3.7 29(百万元)以上(百万元)以上控制控制x1通过通过x1,x2预测预测y2933.822322110 xxxy(百万支百万支)模型改进模型改进x1和和x2对对y的的影响独立
8、影响独立 22322110 xxxy21422322110 xxxxxy参数参数参数估计值参数估计值置信区间置信区间17.32445.7282 28.92061.30700.6829 1.9311-3.6956-7.4989 0.1077 0.34860.0379 0.6594 R2=0.9054 F=82.9409 p=0.0000 0 1 2 3参数参数参数估计值参数估计值置信区间置信区间29.113313.7013 44.525211.13421.9778 20.2906-7.6080-12.6932 -2.5228 0.67120.2538 1.0887-1.4777-2.8518 -
9、0.1037 R2=0.9209 F=72.7771 p=0.0000 3 0 1 2 4x1和和x2对对y的影响有的影响有交互作用交互作用两模型销售量预测两模型销售量预测比较比较21422322110 xxxxxy22322110 xxxy2933.8 y(百万支百万支)区间区间 7.8230,8.7636区间区间 7.8953,8.7592 3272.8 y(百万支百万支)控制价格差控制价格差x1=0.2元,投入广告费元,投入广告费x2=6.5百万元百万元预测区间长度更短预测区间长度更短 略有增加略有增加 y x2=6.5x1=0.2-0.200.20.40.67.588.59x1y-0.
10、200.20.40.67.588.59x1y 56787.588.599.510 x2y 567888.599.51010.5x2y 22322110 xxxy21422322110 xxxxxy两模型两模型 与与x1,x2关系的关系的比较比较y 交互作用影响的讨论交互作用影响的讨论2221.06712.07558.72267.301xxyx价格差价格差 x1=0.1 价格差价格差 x1=0.32223.06712.00513.84535.321xxyx21422322110 xxxxxy5357.72x加大广告投入使销售量增加加大广告投入使销售量增加(x2大于大于6百万元)百万元)价格差较小
11、时增加价格差较小时增加的速率更大的速率更大 56787.588.599.51010.5x1=0.1x1=0.3x2y 1.03.011xxyy价格优势会使销售量增加价格优势会使销售量增加 价格差较小时更需要靠广告价格差较小时更需要靠广告来吸引顾客的眼球来吸引顾客的眼球 完全二次多项式模型完全二次多项式模型 22521421322110 xxxxxxyMATLAB中有命令中有命令rstool直接求解直接求解00.20.47.588.599.5105.566.57x1x2y),(543210从输出从输出 Export 可得可得10.2 软件开发人员的薪金软件开发人员的薪金资历资历 从事专业工作的年
12、数;管理从事专业工作的年数;管理 1=管理人员,管理人员,0=非管理人非管理人员;教育员;教育 1=中学,中学,2=大学,大学,3=更高程度更高程度建立模型研究薪金与资历、管理责任、教育程度的关系建立模型研究薪金与资历、管理责任、教育程度的关系分析人事策略的合理性,作为新聘用人员薪金的参考分析人事策略的合理性,作为新聘用人员薪金的参考 编编号号薪金薪金资资历历管管理理教教育育0113876111021160810303187011130411283102编编号号薪金薪金资资历历管管理理教教育育422783716124318838160244174831601451920717024619346
13、200146名软件开发人员的档案资料名软件开发人员的档案资料 分析与假设分析与假设 y 薪金,薪金,x1 资历(年)资历(年)x2=1 管理人员,管理人员,x2=0 非管理人员非管理人员1=中学中学2=大学大学3=更高更高其它中学,x013其它大学,x014资历每加一年薪金的增长是常数;资历每加一年薪金的增长是常数;管理、教育、资历之间无交互作用管理、教育、资历之间无交互作用 教教育育443322110 xaxaxaxaay线性回归模型线性回归模型 a0,a1,a4是待估计的回归系数,是待估计的回归系数,是随机误差是随机误差 中学:中学:x3=1,x4=0;大大学:学:x3=0,x4=1;更高
14、:更高:x3=0,x4=0 模型求解模型求解443322110 xaxaxaxaay参数参数参数估计值参数估计值置信区间置信区间a011032 10258 11807 a1546 484 608 a26883 6248 7517 a3-2994-3826 -2162 a4148-636 931 R2=0.957 F=226 p=0.000R2,F,p 模型整体上可用模型整体上可用资历增加资历增加1年薪年薪金增长金增长546 管理人员薪金多管理人员薪金多6883 中学程度薪金比更中学程度薪金比更高的少高的少2994 大学程度薪金比更大学程度薪金比更高的多高的多148 a4置信区间包含零点,置信区
15、间包含零点,解释不可靠解释不可靠!中学:中学:x3=1,x4=0;大大学:学:x3=0,x4=1;更高:更高:x3=0,x4=0.x2=1 管理,管理,x2=0 非管理非管理x1资历资历(年年)残差分析方法残差分析方法 结果分析结果分析443322110 xaxaxaxaay残差残差yyee 与资历与资历x1的关系的关系 05101520-2000-1000010002000e与管理与管理教育组合的关系教育组合的关系 123456-2000-1000010002000残差全为正,或全为负,管残差全为正,或全为负,管理理教育组合处理不当教育组合处理不当 残差大概分成残差大概分成3个水平,个水平,
16、6种管理种管理教育组合混在教育组合混在一起,未正确反映一起,未正确反映。应在模型中增加管理应在模型中增加管理x2与教育与教育x3,x4的交互项的交互项 组合组合123456管理管理010101教育教育112233管理与教育的组合管理与教育的组合426325443322110 xxaxxaxaxaxaxaay进一步的模型进一步的模型增加管理增加管理x2与教育与教育x3,x4的交互项的交互项参数参数参数估计值参数估计值置信区间置信区间a01120411044 11363a1497486 508a270486841 7255a3-1727-1939 -1514a4-348-545 152a5-307
17、1-3372-2769a618361571 2101R2=0.999 F=554 p=0.000R2,F有改进,所有回归系数置信有改进,所有回归系数置信区间都不含零点,模型完全可用区间都不含零点,模型完全可用 消除了不正常现象消除了不正常现象 异常数据异常数据(33号号)应去掉应去掉 05101520-1000-5000500e x1 123456-1000-5000500e 组合组合去掉异常数据后去掉异常数据后的结果的结果参数参数参数估计值参数估计值置信区间置信区间a01120011139 11261a1498494 503a270416962 7120a3-1737-1818 -1656a
18、4-356-431 281a5-3056-3171 2942a619971894 2100R2=0.9998 F=36701 p=0.000005101520-200-1000100200e x1 123456-200-1000100200e 组合组合R2:0.957 0.999 0.9998F:226 554 36701 置信区间长度更短置信区间长度更短残差残差图十分正常图十分正常最终模型的结果可以应最终模型的结果可以应用用模型应用模型应用 制订制订6种管理种管理教育组合人员的教育组合人员的“基础基础”薪金薪金(资历为资历为0)组合组合管理管理教育教育系数系数“基础基础”薪金薪金101a0+
19、a39463211a0+a2+a3+a513448302a0+a410844412a0+a2+a4+a619882503a011200613a0+a218241426325443322110 xxaxxaxaxaxaxaay中学:中学:x3=1,x4=0;大;大学:学:x3=0,x4=1;更高:更高:x3=0,x4=0 x1=0;x2=1 管理,管理,x2=0 非管理非管理大学程度管理人员比大学程度管理人员比更高更高程度管理人员的薪金高程度管理人员的薪金高 大学程度非管理人员比大学程度非管理人员比更高更高程度非管理人员的薪金略低程度非管理人员的薪金略低 对定性因素对定性因素(如管理、教育如管理
20、、教育),可以,可以引入引入0-1变量变量处理,处理,0-1变量的个数应比定性因素的水平少变量的个数应比定性因素的水平少1 软件开发人员的薪金软件开发人员的薪金残差分析方法残差分析方法可以发现模型的缺陷,可以发现模型的缺陷,引入交互作用项引入交互作用项常常能够改善模型常常能够改善模型 剔除异常数据剔除异常数据,有助于得到更好的结果,有助于得到更好的结果注:可以直接对注:可以直接对6种管理种管理教育组合引入教育组合引入5个个0-1变量变量 10.3 酶促反应酶促反应 问问题题研究酶促反应(研究酶促反应(酶催化反应)酶催化反应)中嘌呤霉素对反中嘌呤霉素对反应速度与底物应速度与底物(反应物)(反应物
21、)浓度之间关系的影响浓度之间关系的影响 建立数学模型,反映该酶促反应的速度与底建立数学模型,反映该酶促反应的速度与底物浓度以及经嘌呤霉素处理与否之间的关系物浓度以及经嘌呤霉素处理与否之间的关系 设计了两个实验设计了两个实验:酶经过嘌呤霉素处理;酶未:酶经过嘌呤霉素处理;酶未经嘌呤霉素处理。实验数据见下表经嘌呤霉素处理。实验数据见下表:方方案案底物浓度底物浓度(ppm)0.020.060.110.220.561.10反应反应速度速度处理处理764797107123 139 159 152 191 201 207 200未处理未处理6751848698115 131 124 144 158 160
22、/基本模型基本模型 Michaelis-Menten模型模型y 酶促反应的速度酶促反应的速度,x 底物浓度底物浓度 xxxfy21),(1,2 待待定定系数系数 底物浓度较小时,反应速度大致与浓度成正比;底物浓度较小时,反应速度大致与浓度成正比;底物浓度很大、渐进饱和时,反应速度趋于固定值。底物浓度很大、渐进饱和时,反应速度趋于固定值。酶促反应的基本性质酶促反应的基本性质 xy0 1实验实验数据数据00.511.5050100150200250经嘌呤霉经嘌呤霉素处理素处理xy00.511.5050100150200250未经嘌呤未经嘌呤霉素处理霉素处理xy线性化模型线性化模型 经嘌呤霉素处理后
展开阅读全文