数学分析习题课课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学分析习题课课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学分析 习题 课件
- 资源描述:
-
1、1 1、微元法的理论依据、微元法的理论依据.)1()2()(,)()(,)()1()()(,)(定定积积分分的的微微分分的的分分就就是是这这表表明明连连续续函函数数的的定定积积于于是是即即的的一一个个原原函函数数是是则则它它的的变变上上限限积积分分上上连连续续在在设设UdUdxxfdxxfxdUxfdttfxUbaxfbabaxa 第第10章习题课章习题课2 2、名称释译、名称释译.)()(:)()(,)2(方法称微元法方法称微元法计算积分或原函数的计算积分或原函数的这种取微元这种取微元积分积分的无限积累的无限积累到到从从就是其微分就是其微分所求总量所求总量知知由理论依据由理论依据dxxfdx
2、xfUbadxxfdUAba (1)U是是与与一一个个变变量量x的的变变化化区区间间 ba,有有关关的的量量;(2)U对对于于区区间间 ba,具具有有可可加加性性,就就是是说说,如如果果把把区区间间 ba,分分成成许许多多部部分分区区间间,则则U相相应应地地分分成成许许多多部部分分量量,而而U等等于于所所有有部部分分量量之之和和;(3)部分量)部分量iU 的近似值可表示为的近似值可表示为iixf)(;就可以考虑用定积分来表达这个量就可以考虑用定积分来表达这个量U.3 3、所求量的特点、所求量的特点;)的的变变化化区区间间的的相相关关量量(记记为为确确定定),1baxU 2表表达达式式微微元元的
3、的建建立立)U设想把区间设想把区间,ba分成分成n个小区间,取其中任一小区间个小区间,取其中任一小区间并记为并记为,dxxx,求出相应于这小区间的部分量,求出相应于这小区间的部分量U 的近似值的近似值.如果如果U 能近似地表示为能近似地表示为,ba上的一个上的一个连续函数在连续函数在x处的值处的值)(xf与与dx的乘积,的乘积,即即dxxfxdUdU)()(,C)(baxf 其其中中,即即)()(xoxxfU )。(此此时时,以静代动以简代繁、以直代曲、。则则 badxxfU)(4 4、解题步骤、解题步骤是是非非常常困困难难的的。通通常常要要验验证证)()(xoxxfU 一一般般来来说说不不是
4、是唯唯一一的的。中中的的且且)()()(xfxoxxfU 也也不不是是唯唯一一的的。中中的的所所以以)()(xfdxxfUba 平面图形的面积平面图形的面积直角坐标直角坐标参数方程参数方程极坐标极坐标弧微分弧微分弧长弧长旋转体体积旋转体体积旋转体侧面积旋转体侧面积?5 5、定积分应用的常用公式、定积分应用的常用公式(1)平面图形的面积平面图形的面积xyo)(xfy badxxfA|)(|xyo)(1xfy )(2xfy badxxfxfA)()(12AA直角坐标情形直角坐标情形abab上曲线减下曲线对上曲线减下曲线对x积分。积分。yxOcdAx=f(y)(图(图5)x=g(y)dcdyygyf
5、A)()(右曲线减左曲线对右曲线减左曲线对y积分。积分。一般解题步骤:一般解题步骤:(1)画草图,定结构;)画草图,定结构;(2)解必要的交点,定积分限;)解必要的交点,定积分限;(3)选择适当公式,求出面积(定积分)。)选择适当公式,求出面积(定积分)。注意:答案永远为正。注意:答案永远为正。如果曲边梯形的曲边为参数方程如果曲边梯形的曲边为参数方程 )()(tytx 曲边梯形的面积曲边梯形的面积 21)()(ttdtttA (其其中中1t和和2t对对应应曲曲线线起起点点与与终终点点的的参参数数值值)在在1t,2t(或或2t,1t)上上)(tx 具具有有连连续续导导数数,)(ty 连连续续.参
6、数方程所表示的函数参数方程所表示的函数 dA2)(21xo d)(r xo)(2 r)(1 r dA)()(212122极坐标情形极坐标情形(2)体积体积xdxx xyodxxfVbax2)(dyyVdcy2)(xyo)(yx cddxxxfVbay)(2 dyyyVdcx)(2 xo badxxAV)(xdxx ab平行截面面积为已知的立体的体积平行截面面积为已知的立体的体积)(xA.sin)(320 ),(03 drVrr 所所成成立立体体的的体体积积为为:绕绕极极轴轴旋旋转转由由)(rr )(3)平面曲线的弧长平面曲线的弧长xoyabxdxx dy弧长弧长dxysba 21A曲线弧为曲线
7、弧为 )()(tytx )(t其其中中)(),(tt 在在,上上具具有有连连续续导导数数弧长弧长dttts )()(22)(xfy B曲线弧为曲线弧为22dydxds C曲线弧为曲线弧为)()(rr 弧长弧长 drrs )()(22(4)旋转体的侧面积旋转体的侧面积xdxx xyo)(xfy bxaxfy ,0)(badxxfxfS)(1)(22侧侧ydsdS 2(5)变力所作的功变力所作的功)(xFo abxdxx x babadxxFdWW)(6)液体压力液体压力xyoabxdxx )(xf babadxxxfdPP)()(为为比比重重(7)引力引力xyxdxx oAl l llllyyx
8、adxGadFF2322)(.0 xF)(为引力系数为引力系数G(8)函数的平均值函数的平均值 badxxfaby)(1.sin)(320 ),(03 drVrr 所所成成立立体体的的体体积积为为:绕绕极极轴轴旋旋转转由由证明:证明:证证 rdrr )(rr ,在区域内任取小区域:在区域内任取小区域:,ddrrr drddrr2221)(21 其面积近似为:其面积近似为:,212 ddrrdrd ,:rdrddA 故面积微元为故面积微元为,sin2sin22drdrdAr 一周,所得体积为:一周,所得体积为:这块小图形绕极轴旋转这块小图形绕极轴旋转的体积为:的体积为:于是相应于是相应,),(,
展开阅读全文