最优化理论与方法lec10penalty课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最优化理论与方法lec10penalty课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化 理论 方法 lec10penalty 课件
- 资源描述:
-
1、Introduction The general class of penalization methods includes two groups of methods:(i)One group imposes a penalty for violating a constraint;(ii)The other imposes a penalty for reaching the boundary of an inequality constraint.(ii)Barrier Methods(i)Penalty Methods This part discusses a group of m
2、ethods,referred to as penalization methods,which solve a constrained optimization problem by solving a sequence of unconstrained optimization problems.The hope is that,in the limit,the solutions of the unconstrained problems will converge to the solution of the constrained problem.IntroductionSuppos
3、e that our constrained problem is given in the form minimize subject to f xxS 0,if,if xSxxS DefineHence the constrained problem can be transformed into equivalent unconstrained problem minimize f xx Conceptually,if we could solve this unconstrained minimization problem we would be done.IntroductionU
4、nfortunately this is not a practical idea,since the objective function of the unconstrained minimization is not defined outside the feasible region.Barrier and penalty methods solve a sequence of unconstrained subproblems that are more“manageable”.Barrier MethodsPenalty Methodsbarrier termpenalty te
5、rmIntroduction generate a sequence of strictly feasible iterates that converge to a solution of the problem from the interior of the feasible region also called interior-point methods since the methods require the interior of the feasible region to be nonempty,they are not appropriate for problems w
6、ith equality constraints Barrier methods Penalty methods generate a sequence of points that converges to a solution of the problem from the exterior of the feasible region usually more convenient on problems with equality constraints IntroductionDespite their apparent differences,barrier and penalty
7、 methods have much in common.Their convergence theories are similar,and the underlying structure of their unconstrained problems is similar Much of the theory for barrier methods can be replicated for penalty methods and vice versa It is common to use the generic name“penalty methods”to describe bot
8、h methodsBarrier MethodsPenalty Methodsinterior penalty methods exterior penalty methods Barrier MethodsConsider the nonlinear inequality-constrained problem minimize subject to 0,1,ifxgximThe functions are assumed to be twice continuously differentiable.Barrier FunctionsTwo examples of such a funct
9、ion are the logarithmic functionBarrier FunctionsEffect of Barrier Terma one-dimensional problem with bounded constraintsBarrier Functions ,xf xx 1,logmiixf xgx The best known barrier function is the logarithmic barrier function:but the inverse barrier function is also widely used:11,miixf xgx Barri
10、er Functionsminimize ,kxx Barrier methods solve a sequence of unconstrained minimization problems of the form As the barrier parameter is decreased,the effect of the barrier term is diminished,so that the iterates can gradually approach the boundary of the feasible region.Barrier Methods Example 1 1
11、22122minimize 2subject to 10 0f xxxxxxConsider the nonlinear program:Then the logarithmic barrier function gives the unconstrained problem212122minimize ,2log 1logxxxxxxx 212101xx221222201xxxx Barrier Methods Example 1 222102xx 211 22x 11 2312x If the constraints are strictly satisfied,the denominat
12、ors are positive.The unconstrained objective is strictly convex,hence this solution is the unique local minimizer in the feasible region.101 2 03 01lim02x 2011 2 0lim12x Barrier Methods Some RemarksFrom the Example 1,we see thatIndeed,it is possible to prove convergence for barrier methods under mil
13、d conditions.barrier trajectoryA regular point is a point that satisfies some constraint qualification(LICQ).Barrier Methods Some Remarks 10miiigxf xgx 10miiif xgxgx 10miiif xgx iiigx Setting the gradient of the barrier function to zero we obtain.10,1,0,1,miiiiiif xgxgximim Barrier Methods Some Rema
14、rks The above results show that the points on the barrier trajectory,together with their associated Lagrange multiplier estimates,are the solutions to a perturbation of the first-order optimality conditions 221212minimize subject to 10 10f xxxxx Example 2*1,0Tx*122,0Obviously,the optimum:Barrier Met
15、hods Example 2221212minimize ,log1log1xxxxxx 1122201201xxxxThe first-order necessary conditions for optimality are:Suppose the problem is solved via a logarithmic barrier method.Then the method solves the unconstrained minimization problem 112211 22 11 22xxxx The Lagrange multiplier estimates at thi
16、s point are:1121 2111 21x 2121211121x 0 1020 0 00 *xx Barrier Methods Some Remarks Another desirable property shared by both the logarithmic barrier function and the inverse barrier function is that the barrier function is convex if the constrained problem is a convex program.Barrier methods also ha
17、ve potential difficulties.The property for which barrier methods have drawn the most severe criticism is that the unconstrained problems become increasingly difficult to solve as the barrier parameter decreases.The reason is that(with the exception of some special cases)the condition number of the H
18、essian matrix of the barrier function at its minimum point becomes increasingly large,tending to infinity as the barrier parameter tends to zero.Barrier Methods Example 3Consider the problem of Example 2.Then21222201,021xxxx 2122220420,0202xx 4Condition number:22112O The Hessian matrix is ill condit
展开阅读全文