果蔬干制技术课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《果蔬干制技术课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 果蔬干制 技术 课件
- 资源描述:
-
1、果蔬干制技术果蔬干制技术第四章果蔬干制技术第四章果蔬干制技术 第一节果蔬干制原理第一节果蔬干制原理 第二节第二节 干制方法与主要设备干制方法与主要设备 第三节果蔬干制技术第三节果蔬干制技术 第四节干制品的包装、贮藏和复水第四节干制品的包装、贮藏和复水果蔬干制原理果蔬干制原理第四章果蔬干制技术第四章果蔬干制技术果蔬干制又称果蔬脱水,即在人工控制条件下利用一定技术脱除果蔬中的水分,将其水分活度降低到微生物难以生存繁殖的程度,从而使产品具有良好保藏性,因此,脱水是指人工干燥。脱水产品不仅应达到耐久耐藏的要求,而且要求复水后基本能恢复原状。第一节果蔬干制原理第一节果蔬干制原理一、果蔬中水分的状态一、果
2、蔬中水分的状态1果蔬中水分存在的状态新鲜果蔬中含有大量的水分。一般果品含水量为70%90%;蔬菜为75%95%(表4-1)。果蔬干制原理果蔬干制原理名名 称称水分(水分(%)名名 称称水分(水分(%)苹果84.60金针菜(北京产)82.30葡萄87.90辣椒92.40梨89.30萝卜91.70桃87.50芥菜92.90梅91.10白菜95.00枣73.40冬笋88.10柿82.40洋葱88.30荔枝84.80姜87.00龙眼81.40藕89.00无花果83.60(大蒜)蒜头69.80杏85.00蘑菇93.30椰子肉47.00马铃薯81.50银杏(白果)53.70表4-1几种果品蔬菜的水分含量
3、果蔬干制原理果蔬干制原理(1)游离水是以游离状态存在于果蔬组织中的水分。果蔬中的水分,绝大多数都是以游离水的形态存在(表4-2)。游离水具有水的全部性质,能作为溶剂溶解很多物质如糖、酸等。游离水流动性大,能借助毛细管和渗透作用向外或向内移动,所以干制时容易蒸发排除。(2)结合水是指通过氢键和果蔬组织中的化学物质相结合的水分。结合水仅占极小部分,和游离水相比,结合水稳定、难以蒸发,一般在-40以上不能结冰,这个性质具有重要实际意义。结合水不能作溶剂,也不能被微生物所利用。干燥时,当游离水蒸发完之后,一部分结合水才会被排除。1、外汇是以外币表示的可用作对外支付的金融资产。2、外汇必须具有充分的可兑
4、换性。3、外汇必须在国际经济交易中被各国普遍接受和使用。常见的外国货币:10.2 10.2 外汇与汇率外汇与汇率(二)外汇的特征(二)外汇的特征英文Foreign Exchange Rate。是指一种货币用另一种货币表示出的价格,或者说,是两种货币的兑换比价(比率)。比如,欧元兑美元的汇率表示为:EUR/USD=1.2546。这表示1欧元等于1.2546美元,在这里欧元称为单位货币,美元称为计价货币。10.2 10.2 外汇与汇率外汇与汇率10.2.2 汇率与汇率标价方法汇率与汇率标价方法(一)汇率(一)汇率汇率的标价方式分为两种:直接标价法和间接标价法。1、直接标价法。又叫“应付标价法”。是
5、以一定单位(如1、100、1000、10000)的外国货币为标准,来计算应付出多少单位本国货币才等价值。相当于计算购买一定单位外币所应付多少本国货币,所以叫应付标价法。包括中国在内的世界上绝大多数国家目前都采用直接标价法。在国际外汇市场的主要交易币种中,日元、瑞士法郎、加元等均为直接标价法。10.2 10.2 外汇与汇率外汇与汇率10.2.2 汇率与汇率标价方法汇率与汇率标价方法(二)汇率的标价方法(二)汇率的标价方法 2、间接标价法。又叫“应收标价法”。它是以一定单位(如1、100、1000、10000)的本国货币为标准,来计算应收多少单位的外国货币才等价值。相当于计算出售一定单位的本国货币
6、所应收到的外币,所以叫应收标价法。在国际外汇市场的主要交易币种中,一般是英联邦国家采用这一标价法,如英镑、澳大利亚元等。1999年1月诞生的欧元也是采用间接标价法。另外,也有美元标价法。即指以一定单位的美元为标准来计算应兑换多少单位其他货币的汇率表示方法。10.2 10.2 外汇与汇率外汇与汇率 1、固定汇率指一国货币同另一国货币的汇率基本固定,其波动被限制在极小的范围内,波动幅度很小。2、浮动汇率指一国货币当局不规定本币对其它货币的官方汇率,外汇汇率完全由市场供求关系来决定。事实上,100%由市场来决定汇率的浮动并不存在,各国政府都会在必要的时候干预外汇市场,使之成为调节经济、政治关系等的另
7、外一个杠杆。10.2 10.2 外汇与汇率外汇与汇率10.2.3 汇率的类别汇率的类别(一)按汇率的稳定性分为固定汇率和浮动汇率(一)按汇率的稳定性分为固定汇率和浮动汇率 1、官方汇率指由一国货币当局或外汇管理部门制定和公布的用于一切外汇交易的汇率,往往又称为法定汇率,一般在外汇管制较为严格的国家使用。2、市场汇率市场汇率指在自由外汇市场上买卖外汇基础之上形成的汇率,在外汇管制较为宽松的国家使用。10.2 10.2 外汇与汇率外汇与汇率(二)按汇率的管制程度可分为官方汇率和市场汇率(二)按汇率的管制程度可分为官方汇率和市场汇率 1、基础汇率指本国货币与基准货币或关键货币的汇率。基准货币或关键货
8、币是国际上普遍使用的,在本国国际收支中使用最多的,在国际储备中比重最大的货币。2、交叉汇率指通过基础汇率套算出的本币对其它货币的汇率,也称套算汇率,简单理解就是非美货币之间的货币汇率报价。10.2 10.2 外汇与汇率外汇与汇率(三)按汇率的标价方式可分为基础汇率和交叉汇率(三)按汇率的标价方式可分为基础汇率和交叉汇率前者指即期外汇交易所使用的汇率,后者指远期外汇交易所使用的汇率。10.2 10.2 外汇与汇率外汇与汇率(四)按外汇交易期限可分为即期汇率和远期汇率(四)按外汇交易期限可分为即期汇率和远期汇率开盘汇率也称为开盘价,收盘汇率也称为收盘价。10.2 10.2 外汇与汇率外汇与汇率(五
9、)按外汇市场营业时间可分为开盘汇率和收盘汇率(五)按外汇市场营业时间可分为开盘汇率和收盘汇率(六)按外汇买卖对象可分为银行同业汇率(六)按外汇买卖对象可分为银行同业汇率(Inter-Bank Rate)和)和商业汇率(商业汇率(Mercantile Rate)。)。(七)按外汇资金的性质不同,可分为贸易汇率和金融汇率(七)按外汇资金的性质不同,可分为贸易汇率和金融汇率(八)根据汇兑方式的不同,分为电汇汇率、信汇汇率、票汇汇率和(八)根据汇兑方式的不同,分为电汇汇率、信汇汇率、票汇汇率和现钞汇率。现钞汇率。国际储备是指一国政府为弥补国际收支差额、保持汇率稳定及应付其他紧急支付的需要而持有的国际间
10、普遍接受的资产。1、广义的国际储备分为自有储备和借入储备,又可以称为国际清偿力(International Liquidity)。2、狭义的国际储备专指自有储备。10.3 10.3 国际储备国际储备10.3.1 国际储备的概念、构成与作用国际储备的概念、构成与作用(一)国际储备的概念(一)国际储备的概念果蔬干制原理果蔬干制原理名名 称称总水量(总水量(%)游离水(游离水(%)结合水(结合水(%)苹果88.7064.6024.10甘蓝92.2082.909.30马铃薯81.5064.0017.50胡萝卜88.6066.2022.40表4-2几种果蔬中不同形态水分的含量 果蔬干制原理果蔬干制原理果
11、蔬干燥过程中,根据水分是否能被排除将其分为平衡水分和自由水分:平衡水分。在一定的干燥条件下,当果蔬中排出的水分与吸收的水分相等时,果蔬的含水量称为该干燥条件下某种果蔬的平衡水分,也可称为平衡湿度或平衡含水量。在任何情况下,如果干燥介质条件(温度和湿度)不发生变化,果蔬中所含的平衡水分也将维持不变。因此,平衡水分也就是在这一干燥条件下,果蔬干燥的极限。自由水分。在一定干燥条件下,果蔬中所含的大于平衡水分的水。这部分水在干制过程中,能够排除掉。自由水分大部分是游离水,还有一部分是结合水。果蔬中除水分以外的物质,统称为干物质,包括可溶性物质与不溶性物质。果蔬干制原理果蔬干制原理 2果蔬中的水分活度(
12、1)水分活度 果蔬中的水分不同于纯水,受果蔬中多种成分的吸附,使果蔬组织中水分的蒸气压比同温度下纯水的蒸汽压低,水汽化变成蒸汽而逸出的能力也降低,从而使水在果蔬组织内部扩散移动能力降低,水透过细胞的渗透能力也降低。为了综合说明果蔬中水的这一物理化学性能变化对上述各种现象的影响,引入了水分活度的概念。水分活度是指溶液中水的逸度与同温度下纯水逸度之比,也就是指溶液中能够自由运动的水分子与纯水中的自由水分子之比。可近似的表示为食品中水分的蒸汽压与同温度下纯水的蒸汽压之比,其计算公式如下:果蔬干制原理果蔬干制原理AW=P/P0=ERH/100 式中Aw水分活度;P溶液或食品中的水蒸气分压;P0同温度下
13、纯水的蒸汽压。ERH为平衡相对湿度,即食品中的水分蒸发达到平衡时,食品上空大气的相对湿度。水分活度是从01之间的数值,纯水的AW=1。水分活度表示水与食品的结合程度,Aw值越小,结合程度越高,脱水越难。水分活度只有在水未冻结前有意义,此时水分活度是食品组成与湿度的函数。果蔬干制原理果蔬干制原理对于不同食品而言,含水量相同的食品水分活度不一定相同,水分活度相同的食品含水量也不一定相同。图4-1为等温吸湿曲线(即在恒定的温度下,以产品的水分含量(g水/g干物质)为纵坐标,以Aw为横坐标所作的曲线),表示产品的含水量与水分活度之间的关系。在低含水量区,极少量的水分含量变动即可引起水分活度极大的变动,
14、曲线的这一线段称为等温吸湿曲线,放大后的这一线段如图4-2。在吸湿曲线的吸附与解吸之间有滞后现象。在等温吸湿曲线上,按照含水量和水分活度情况,可以分为三个区段见图4-1。果蔬干制原理果蔬干制原理图4-1吸湿等温线及分区图4-2吸湿等温线的两种形式果蔬干制原理果蔬干制原理第I区段是单层水分子区。水在溶质上以单层水分子层状吸附着,结合力最强,Aw也最低,在00.25之间,在这个区段范围内,相当于物料含水00.7g/g干物质。第区段是多层水分子区。在此状态下存在的水是靠近溶质的多层水分子,它通过氢键与邻近的水以及产品中极性较弱的基团缔合,它的流动性较差,其Aw在0.250.8之间,这种状态下的水称为
15、型束缚水。这个区段范围内,产品含水量在0.07g至0.140.33gg干物质范围内。I区和区的水通常占总水分含量的5%以下。果蔬干制原理果蔬干制原理第区段是产品组织内和组织间隙中的水以及细胞内的水和凝胶中束缚的水,这部分水流动性受到阻碍,在其他方面与稀盐溶液中水具有类似的性质。这是因为区的水被I区、区中的水所隔离,溶质对它的影响很小,其Aw在0.800.99之间,这种状态的水称为型束缚水。这个区段范围内,产品含水量最低为0.140.33g/g干物质,最高为20g/g干物质。区的水通常占总水分的95%以上。应该指出的是:各区域的水不是截然分开的,也不是固定在某一个区域内,而是在区域内和区域间快速
16、的交换着。所以,等温吸湿曲线中各个区域之间有过渡带。果蔬干制原理果蔬干制原理(2)水分活度与微生物 每种产品都有一定的Aw值,各种微生物的活动、化学反应以及生物化学反应也都有一定的Aw阈值(表4-3、4-4)。微生物种类微生物种类生长繁殖的最低生长繁殖的最低A Aw w革兰氏阴性杆菌、一部分细菌的孢子、某些酵母菌大多数球菌、乳杆菌、杆菌科的营养体细胞、某些霉菌大多数酵母菌大多数霉菌、金黄色葡萄球菌大多数耐盐细菌耐干旱霉菌耐高渗透压酵母任何微生物不能生长1.000.950.950.910.910.870.870.800.800.750.750.650.650.600.60表4-3一般微生物生长繁
17、殖的最低Aw值 果蔬干制原理果蔬干制原理需要指出的是,即使含水量相同的产品,在贮藏期间的稳定性也会因种类而异的。这是因为食品的成分和质构状态不同,水分的束缚度不同,因而Aw值也不同之故。表4-4所示为一组Aw相同产品的含水量,由此可见Aw值对评价食品的耐藏性是十分重要的。表4-4Aw=0.7时若干食物的含水量(g水/g干物质)凤梨 0.28苹果 0.34香蕉 0.25糊精 0.14干淀粉 0.13干马铃薯 0.15大豆 0.10燕麦片 0.13聚甘氢酸 0.13卵白 0.15鲟鱼肉 0.21鸡肉 0.18果蔬干制原理果蔬干制原理大多数果蔬的水分活度都在0.99以上,所以各种微生物都能导致果蔬的
18、腐败。细菌生长所需的最低水分活度最高,当果蔬的水分活度值降到0.90以下时,就不会发生细菌性的腐败,而酵母菌和霉菌仍能旺盛生长,导致食品腐败变质。一般认为,在室温下贮藏干制品,其水分活度应降到0.7以下方为安全,但还要根据果蔬种类、贮藏温度和湿度等因素而定。果蔬干燥过程并不是杀菌过程,而且随着水分活度的下降,微生物慢慢进入休眠状态。换句话说,干制并非无菌,在一定环境中吸湿后,微生物仍能引起制品变质,因此,干制品要长期保存,还要进行必要的包装。果蔬干制原理果蔬干制原理(3)水分活度与酶的活性 引起干制品变质的原因除微生物外,还有酶。酶的活性也与水分活度有关,水分活度降低,酶的活性也降低,果蔬干制
19、时,酶和底物两者的浓度同时增加,使得酶的生化反应速率变得较为复杂。在某些干制果蔬中,酶仍保持相当的活性,只有当干制品的水分降到1%以下时,酶的活性才消失。但实际干制品的水分不可能降到1%以下。因此,在干制前,需进行热烫处理,以钝化果蔬中的酶。果蔬干制原理果蔬干制原理二、干制机理二、干制机理常规的加热干燥,都是以空气作为干燥介质。当果蔬所含的水分超过平衡水分,当它和干燥介质接触时,自由水分开始蒸发,水分从产品表面的蒸发称为水分外扩散(表面汽化)。干燥初期,水分蒸发主要是外扩散,由于外扩散的结果,造成产品表面和内部的水蒸气产生压差,使内部水分向表面移动,称之为水分内扩散,此外,干燥时食品各部分温度
20、不同,还存在水分的热扩散,其方向是从温度较高处向较低处转移,但因干燥时内外层温差较小,热扩散较弱。果蔬干制原理果蔬干制原理实际上,干燥过程中水分的表面汽化和内部扩散是同时进行,二者的速度随果蔬种类、品种、原料的状态及干燥介质的不同而异。一些含糖量高、块形大的果蔬如枣、柿等,其内部水分扩散速度较表面汽化速度慢,这时内部水分扩散速度对整个干制过程起控制作用,称为内部扩散控制。这类果蔬干燥时,为了加快干燥速度,必须设法加快内部水分扩散速度,如采用抛物线式升温,对果实进行热处理等,而决不能单纯提高干燥温度、降低相对湿度,特别是干燥初期,否则表面汽化速度过快,内外水分扩散的毛细管断裂,使表面过干而结壳(
21、称为硬壳现象),阻碍了水分的继续蒸发,反而延长干燥时间。此时,由于内部含水量高,蒸汽压力高,当这种压力超过果蔬所能忍受的压力时,就会使组织被压破,出现开裂现象,使制品品质降低。果蔬干制原理果蔬干制原理对一些含糖量低,切成薄片的果蔬产品如萝卜片、黄花菜、苹果等,其内部水分扩散速度较表面水分汽化速度快,水分在表面的汽化速度对整个干制过程起控制作用,称为表面汽化控制。这种果蔬内部水分扩散一般较快,只要提高环境温度,降低湿度,就能加快干制速度。因此,干制时必须使水分的表面汽化和内部扩散相互衔接,配合适当,才能缩短干燥时间,提高干制品的质量。果蔬干制原理果蔬干制原理三、果蔬干燥速度和温度的变化三、果蔬干
22、燥速度和温度的变化 图4-3果蔬干燥时温度和湿度变化曲线图1原料温度2原料湿度果蔬干制原理果蔬干制原理图4-3表示干燥速度和干燥时间的关系,果蔬进入干燥初期所蒸发出来的必然是游离水,此时,果蔬表面的蒸汽压几乎和纯水的蒸汽压相等,而且在这部分水分未完全蒸发掉以前,此蒸汽压也必然保持不变,并在一定的情况下会出现干燥速度不变的现象即恒速干燥阶段。只要外界干燥条件恒定,此时的干燥速度就保持不变。当恒速干燥过程进行到全部游离水汽化完毕后,余下的水分为结合水分时,水分的蒸汽压随水分结合力的增加而不断降低,这样,在一定的干燥条件下,干燥速度就会下降即降速干燥阶段。实际上,结合水和游离水并没有绝对明显的界限,
23、因此,干燥两个阶段的划分也没有明显的界限。果蔬干制原理果蔬干制原理图4-4表示果蔬干燥时的温度、绝对水分含量与干燥时间的关系,开始干燥时,果蔬接受干燥介质的热量而使其温度升高,当果蔬温度超过水分蒸发需要的温度时,水分开始蒸发,此时蒸发的水主要是游离水,由于干燥速度是恒定的,所以单位时间供给汽化所需的热量也应一定,使果蔬表面温度亦保持恒定,而果蔬的湿度则有规律下降,到达C点,干制的第一阶段结束,开始汽化结合水。正如干燥速度要发生变化一样,果蔬表面温度也要发生变化。这时,果蔬表面水分的蒸汽压在不断下降,其湿度降低,干燥速度也相应降低,汽化所需的热量愈来愈高,导致果蔬表面温度提高,出现了CD段温度和
24、湿度的变化。当原料表面和内部水分达到平衡状态时,水分的蒸发作用停止,干燥过程也就结束。果蔬干制原理果蔬干制原理图4-4干燥速度曲线图果蔬干制原理果蔬干制原理四、影响干燥速度的因素四、影响干燥速度的因素 1干燥的环境条件(1)干燥介质的温度温度升高,空气所能够容纳的水蒸气就会增多,空气的湿含量就增大。果蔬的水分就容易蒸发,干燥速度就会加快。反之,温度低,空气的湿含量小,干燥速度就慢。干制过程中,所采用的高温是有一定限度的,温度过高会加快果蔬中糖分和其他营养成分的损失或致焦化,影响制品外观和风味;此外,干燥前期,高温还易使果蔬组织内汁液迅速膨胀,细胞壁破裂,内容物流失;如果开始干燥时,采用高温低湿
25、条件,则容易造成硬壳现象。相反,干燥温度过低,使干燥时间延长,产品容易氧化变色。因此,干燥时应选择适合的干燥温度。果蔬干制原理果蔬干制原理(2)干燥介质的湿度一般来说,空气的相对湿度愈小,水分蒸发的速度就愈快。相对湿度又受温度的影响,空气温度升高,相对湿度就会减少;反之,温度降低,相对湿度就会增大。在温度不变时,相对湿度愈低,则空气的饱和差就愈大。在干制过程中,可以采用升高温度和降低相对湿度来提高果蔬的干燥速 度。干燥介质的相对湿度不仅与干燥速度有关,而且也决定干制品的终点含水量。相对湿度愈低,干制品的含水量也愈低。果蔬干制原理果蔬干制原理(3)空气的流动速度干燥空气的流动速度越大,果蔬的干燥
展开阅读全文