机器学习与应用:Tensorflow、神经网络课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《机器学习与应用:Tensorflow、神经网络课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器 学习 应用 Tensorflow 神经网络 课件
- 资源描述:
-
1、神经网络基础1、感知机2、人工神经网络感知机有n个输入数据,通过权重与各数据之间的计算和,比较激活函数结果,得出输出应用:很容易解决与、或、非问题Rosenblatt在1957年,于Cornell航空实验室时所发明的一种人工神经网络感知机与逻辑回归的联系与区别激活函数、结果分析演示:http:/playground.tensorflow.org/#activation=sigmoid®ularization=L2&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&
2、noise=0&networkShape=3&seed=0.84062&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&showTestData_hide=true&learningRate_hide=true®ula
3、rizationRate_hide=true&percTrainData_hide=true&numHiddenLayers_hide=true&discretize_hide=true&activation_hide=true&problem_hide=true&noise_hide=true®ularization_hide=true&dataset_hide=true&batchSize_hide=true&playButton_hide=false神经网络的发展定义:在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),简称神经
4、网络(:neural network,缩写NN)或类神经网络,是一种模仿生物神经网络的结构和功能的计算模型,用于对函数进行估计或近似。神经网络的种类:基础神经网络:单层感知器,线性神经网络,BP神经网络,Hopfield神经网络等进阶神经网络:玻尔兹曼机,受限玻尔兹曼机,递归神经网络等深度神经网络:深度置信网络,卷积神经网络,循环神经网络,LSTM网络等杰弗里杰弗里埃弗里斯特埃弗里斯特辛顿辛顿(英语:GeoffreyEverestHinton)(1947年12月6日)是一位英国出生的计算机学家和心理学家,以其在神经网络方面的贡献闻名。辛顿是反向传播算法的发明人之一,也是深度学习的积极推动者。G
5、eoffrey HintonYann LecunYoshua BengioAndrew Ng神经网络的特点输入向量的维度和输入神经元的个数相同每个连接都有个权值同一层神经元之间没有连接由输入层,隐层,输出层组成第N层与第N-1层的所有神经元连接,也叫全连接结构结构(Architecture)例如,神经网络中的变量可以是神经元连接的权重激励函数(激励函数(Activity Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。学习规则(学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。(反向传播算
6、法)神经网络的组成浅层人工神经网络模型1、SoftMax回归2、损失计算API3、其他方法API介绍Mnist数据集神经网络分析one-hot编码分析one-hotAPI介绍from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets(FLAGS.data_dir,one_hot=True)获取数据SoftMax回归公式:1、全连接-从输入直接到输出特征加权:tf.matmul(a,b,name=None)+bias return:全连接结果,供交叉损失运算 不需要激活函数(
7、因为是最后的输出)想一想线性回归的损失函数,那么如何去衡量神经网络的损失?损失计算损失计算-交叉熵损失公式(了解)交叉熵损失公式(了解)公式:注:2、SoftMax计算、交叉熵 tf.nn.softmax_cross_entropy_with_logits(labels=None,logits=None,name=None)计算logits和labels之间的交叉损失熵 labels:标签值(真实值)logits:样本加权之后的值 return:返回损失值列表损失值列表平均值计算 tf.reduce_mean(input_tensor)计算张量的尺寸的元素平均值其他方法-损失下降API tf.
展开阅读全文