书签 分享 收藏 举报 版权申诉 / 59
上传文档赚钱

类型现代信号处理第6章连续小波变换课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3310046
  • 上传时间:2022-08-18
  • 格式:PPT
  • 页数:59
  • 大小:1.47MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《现代信号处理第6章连续小波变换课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    现代 信号 处理 连续 变换 课件
    资源描述:

    1、机械工程及自动化研究所现代信号处理技术及应用现代信号处理技术及应用第六章 连续小波变换及其工程应用西安交通大学机械工程学院研究生学位课程西安交通大学机械工程学院研究生学位课程第六章第六章 连续小波变换及其工程应用连续小波变换及其工程应用6.1 6.1 谐波小波变换及其工程应用谐波小波变换及其工程应用6.2 Laplace6.2 Laplace小波特征波形相关滤波小波特征波形相关滤波6.3 Hermitian6.3 Hermitian连续小波变换与信号奇异性识别连续小波变换与信号奇异性识别引言引言小波分析中被广泛使用的小波分析中被广泛使用的Daubechies类小波与样类小波与样条小波都是实小波

    2、,它们没有明确的解析表达式,条小波都是实小波,它们没有明确的解析表达式,对信号的小波分解是通过构造相应的正交滤波器系对信号的小波分解是通过构造相应的正交滤波器系数数hk和和gk运用运用Mallat快速算法实现的。快速算法实现的。除了这两类小波,其它类型的小波基函数也被陆续除了这两类小波,其它类型的小波基函数也被陆续构造出来并且得到了深入研究和工程运用。构造出来并且得到了深入研究和工程运用。本章介绍三种在工程实际应用中取得了理想效果的本章介绍三种在工程实际应用中取得了理想效果的连续小波基函数,它们都具有明确的解析表达式。连续小波基函数,它们都具有明确的解析表达式。这三种连续小波分别是谐波小波、这

    3、三种连续小波分别是谐波小波、Laplace小波和小波和Hermitian小波。小波。6.1 6.1 谐波小波变换及其工程应用谐波小波变换及其工程应用6.1.1谐波小波的定义及正交性谐波小波的定义及正交性6.1.2 Newland快速算法快速算法6.1.3 谐波小波时频图谐波小波时频图6.1.4 谐波小波滤波谐波小波滤波6.1.5 谐波小波应用谐波小波应用n小波分形技术原理与离散信号盒维数的计算小波分形技术原理与离散信号盒维数的计算n 谐波小波轴心轨迹阵列的实现及其不规则度描述谐波小波轴心轨迹阵列的实现及其不规则度描述6.1.1谐波小波的定义及正交性谐波小波的定义及正交性谐波小波谐波小波(har

    4、monic wavelet)是由剑桥大学是由剑桥大学D.E.Newland教授在教授在1993年提出的。年提出的。谐波小波是一种复小波,在频域紧支,有明确的函谐波小波是一种复小波,在频域紧支,有明确的函数表达式,其伸缩与平移构成了数表达式,其伸缩与平移构成了L2(R)空间的规范空间的规范正交基。正交基。谐波小波小波具有完全谐波小波小波具有完全“盒形盒形”的频谱。的频谱。谐波小波分解算法是通过信号的快速傅里叶变换谐波小波分解算法是通过信号的快速傅里叶变换(FFT)及其逆变换()及其逆变换(IFFT)实现的,算法速度快,)实现的,算法速度快,精度高,因而具有很好的工程应用价值。精度高,因而具有很好

    5、的工程应用价值。6.1.1谐波小波的定义及正交性谐波小波的定义及正交性实偶函数实偶函数we(t)和实奇函数和实奇函数wo(t),它们的傅里叶变换分别为它们的傅里叶变换分别为 6.1.1谐波小波的定义及正交性谐波小波的定义及正交性W()所对应的函数所对应的函数w(t)=we(t)+iwo(t)由由W()的傅里叶逆的傅里叶逆变换得变换得 w(t)函数为谐波小波,它是复小波,在频域紧支,且具有完全函数为谐波小波,它是复小波,在频域紧支,且具有完全“盒形盒形”的频谱。的频谱。6.1.1谐波小波的定义及正交性谐波小波的定义及正交性根据小波理论对谐波小波进行伸缩、平移就生成谐波小波根据小波理论对谐波小波进

    6、行伸缩、平移就生成谐波小波函数族(函数族(j,k Z):):设设w(t)伸缩平移得到函数族为伸缩平移得到函数族为v(t),即,即 其频谱为其频谱为随着小波层(即随着小波层(即j)的变)的变大,谐波小波的频谱宽大,谐波小波的频谱宽度倍增而幅值降低度倍增而幅值降低分析频宽从高频到低频是以分析频宽从高频到低频是以1/21/2关系逐渐减小的,对信号的低关系逐渐减小的,对信号的低频部分划分比较细,而高频部分划分比较粗,这说明谐波小波频部分划分比较细,而高频部分划分比较粗,这说明谐波小波分解是一种小波分解分解是一种小波分解 6.1.1谐波小波的定义及正交性谐波小波的定义及正交性当当j 0,W()与与V()

    7、在频域中总处于不同的频段,因而总有在频域中总处于不同的频段,因而总有说明处于不同层的谐波小波总是正交的说明处于不同层的谐波小波总是正交的 对于处于同层的谐波小波对于处于同层的谐波小波w(t),w(t k),其中其中(k 0,k Z),说明处于第零层的谐波小波也是正交的。对其它层,以上说明处于第零层的谐波小波也是正交的。对其它层,以上结论可以类似得到结论可以类似得到。因此,因此,w w(t t)及其伸缩平移函数族构成信号的正交基。以谐波小及其伸缩平移函数族构成信号的正交基。以谐波小波作为基函数系就可以将信号既不交迭,又无遗漏地分解到相波作为基函数系就可以将信号既不交迭,又无遗漏地分解到相互独立的

    8、空间,实现将信号成分分解到不同频段互独立的空间,实现将信号成分分解到不同频段 。6.1.2 Newland快速算法快速算法谐波小波构成了谐波小波构成了L2(R)空间的规范正交基,则任何信号空间的规范正交基,则任何信号x(t)L2(R)都可以表示为谐波小波的线性和,即都可以表示为谐波小波的线性和,即aj,k为函数为函数x(t)的小波展开系数的小波展开系数 用求内积的方法计算小波展开系数运算量太大,是很不实用的。用求内积的方法计算小波展开系数运算量太大,是很不实用的。因此谐波小波的提出者因此谐波小波的提出者NewlandNewland给出了一种快速算法,可以快给出了一种快速算法,可以快速而精确地求

    9、得谐波小波分解,对谐波小波运用于工程实践有速而精确地求得谐波小波分解,对谐波小波运用于工程实践有很大好处。很大好处。6.1.2 Newland快速算法快速算法Newland快速算法是通过信号的快速傅里叶变换快速算法是通过信号的快速傅里叶变换FFT和快速和快速傅里叶逆变换傅里叶逆变换IFFT实现。设有离散信号实现。设有离散信号x(r),r=0,N 1,其中其中N=2n,其谐波小波分解为,其谐波小波分解为as,s=0,N 1。令。令as由由Fs经分段、对每一段作经分段、对每一段作IFFT得到,下两式为其表达式:得到,下两式为其表达式:6.1.2 Newland快速算法快速算法下图表示一数据长度为下

    10、图表示一数据长度为16的实序列的谐波小波分解示意图的实序列的谐波小波分解示意图6.1.3 谐波小波时频图谐波小波时频图谐波小波分解结果一般用谐波小波分解结果一般用小波时频图(小波时频图(Wavelet Time-Frequency Map)直)直观表示。观表示。在各网格以在各网格以as模的平方为高模的平方为高作柱体就构成了谐波小波作柱体就构成了谐波小波时频图。小波时频图是随时频图。小波时频图是随|as|2起伏的面。这里高度取起伏的面。这里高度取lg|as|2。由由Parseval公式得到公式得到,谐波小波分解结果表明不同频率和谐波小波分解结果表明不同频率和时间的谐波小波能量对整个信号能量贡献的

    11、大小时间的谐波小波能量对整个信号能量贡献的大小 6.1.3 谐波小波时频图谐波小波时频图下图为信号下图为信号x(r)=sin(2 15tr),(r=0,511;tr=r/320)的波形及谐波小波分解时频图。该信号是单一频率的,的波形及谐波小波分解时频图。该信号是单一频率的,所以谐波小波分解只有一个层有值,在小波时频图上表现所以谐波小波分解只有一个层有值,在小波时频图上表现为对应的层有峰值。为对应的层有峰值。谐波小波分解系数,低频频带内的数据点数少,高频频带内谐波小波分解系数,低频频带内的数据点数少,高频频带内的数据点数多。的数据点数多。6.1.4 谐波小波滤波谐波小波滤波旋转机械状态监测与故障

    12、诊断利用机组同一截面两路相互旋转机械状态监测与故障诊断利用机组同一截面两路相互垂直振动信号的合成轴心轨迹来监测其运行状态和识别故垂直振动信号的合成轴心轨迹来监测其运行状态和识别故障类型。当设备出现故障时,信号表现出非平稳特性,而障类型。当设备出现故障时,信号表现出非平稳特性,而小波变换对处理非平稳信号是非常有效的,我们可以用相小波变换对处理非平稳信号是非常有效的,我们可以用相互垂直的互垂直的X方向与方向与Y方向的小波分解结果来合成轴心轨迹。方向的小波分解结果来合成轴心轨迹。Mallat算法分解时要隔二抽一,从而使得小波分解各层的算法分解时要隔二抽一,从而使得小波分解各层的数据点数和采样频率随分

    13、解层次增加而逐渐减小。这样,数据点数和采样频率随分解层次增加而逐渐减小。这样,直接对运行转子垂直、水平方向振动信号进行小波分解,直接对运行转子垂直、水平方向振动信号进行小波分解,采用同一尺度同一频段的分解数据合成轴心轨迹,将使轴采用同一尺度同一频段的分解数据合成轴心轨迹,将使轴心轨迹不但不具有可比性,而且由于数据点数减少、采样心轨迹不但不具有可比性,而且由于数据点数减少、采样频率降低会使合成的轴心轨迹失真,这种直接合成轴心轨频率降低会使合成的轴心轨迹失真,这种直接合成轴心轨迹的方法是不合适的。迹的方法是不合适的。谐波小波滤波能够在低频频带和高频频带内都具有足够的谐波小波滤波能够在低频频带和高频

    14、频带内都具有足够的数据点数。数据点数。6.1.4 谐波小波滤波谐波小波滤波谐波小波实际上是一个完全理想的带通滤波器谐波小波实际上是一个完全理想的带通滤波器,可以用下,可以用下面的方法定义谐波小波面的方法定义谐波小波 其中其中m,n决定了谐波小波变换的尺度(决定了谐波小波变换的尺度(j),且),且n=2m,当当m=0时,时,n=1。谐波小波的光滑性,谐波小波的光滑性,“盒形盒形”谱特性,零相移特性以及明谱特性,零相移特性以及明显的数学表达式,使得我们可构造出不同尺度下各频段序显的数学表达式,使得我们可构造出不同尺度下各频段序列数据点数不变、采样频率不变的算法,最终成功应用于列数据点数不变、采样频

    15、率不变的算法,最终成功应用于转子轴心轨迹分析转子轴心轨迹分析 6.1.4 谐波小波滤波谐波小波滤波6.1.4 谐波小波滤波谐波小波滤波6.1.4 谐波小波滤波谐波小波滤波为了对信号的某一特定频段的成分进行研究,在对信号的为了对信号的某一特定频段的成分进行研究,在对信号的谐波小波分解进行重构时可将其它频段的谐波小波系数置谐波小波分解进行重构时可将其它频段的谐波小波系数置为为“0”,只保留该段的小波系数,由于谐波小波的正交性,只保留该段的小波系数,由于谐波小波的正交性,如此重构的结果只包含信号该频段的成分,其它成分都被如此重构的结果只包含信号该频段的成分,其它成分都被剔除了。剔除了。这个算法与本节

    16、开始所给出的算法是一致的,实这个算法与本节开始所给出的算法是一致的,实际是谐波小波重构算法的延伸,是对信号进行了滤波,我际是谐波小波重构算法的延伸,是对信号进行了滤波,我们称这一过程为谐波小波滤波。们称这一过程为谐波小波滤波。谐波小波滤波计算过程并未采用基于隔二抽取的谐波小波滤波计算过程并未采用基于隔二抽取的Mallat算算法,因此保证了信号各频段成分点数不变,采样频率不变,法,因此保证了信号各频段成分点数不变,采样频率不变,这样就可以实现机组同一截面互相垂直两个方向振动信号这样就可以实现机组同一截面互相垂直两个方向振动信号的轴心轨迹合成。的轴心轨迹合成。6.1.4 谐波小波滤波谐波小波滤波谐

    17、波小波包变换谐波小波包变换6.1.5 谐波小波应用谐波小波应用小波分形技术原理与离散信号盒维数的计算小波分形技术原理与离散信号盒维数的计算谐波小波轴心轨迹阵列的实现及其不规则度描述谐波小波轴心轨迹阵列的实现及其不规则度描述 小波变换只是把信号从时间域变换到时间小波变换只是把信号从时间域变换到时间尺度尺度域或时间域或时间频率域,如何从小波变换后的信号中提取频率域,如何从小波变换后的信号中提取机械动态信息和故障特征才是工程应用领域最关心的机械动态信息和故障特征才是工程应用领域最关心的问题。因此,为了使小波分析技术达到工程实用化,问题。因此,为了使小波分析技术达到工程实用化,必须研究开发小波变换信号

    18、再处理技术必须研究开发小波变换信号再处理技术小波分形技术原理与离散信号盒维数的计算小波分形技术原理与离散信号盒维数的计算分形的自相似仿射算子分形的自相似仿射算子r与小波变换的伸缩因子与小波变换的伸缩因子a是作用相同,是作用相同,小波变换从低分辨到高分辨的过渡原则与分形过程的从总小波变换从低分辨到高分辨的过渡原则与分形过程的从总体向局部、从宏观向微观深化分析原则是一致的,小波和体向局部、从宏观向微观深化分析原则是一致的,小波和分形都具有自相似性,两者结合是可行的。分形都具有自相似性,两者结合是可行的。小波分形技术原理是应用小波包变换将机械振动信号分解小波分形技术原理是应用小波包变换将机械振动信号

    19、分解到正交的、独立的频带内,然后分别计算出每个频带信号到正交的、独立的频带内,然后分别计算出每个频带信号的盒维数,的盒维数,用盒维数衡量小波包分解每个频带信号的复杂用盒维数衡量小波包分解每个频带信号的复杂程度程度由于一维离散信号的盒维数是介于由于一维离散信号的盒维数是介于1和和2之间的一个实数,之间的一个实数,信号越复杂维数越大信号越复杂维数越大 分形分形小波小波小波分形技术原理与离散信号盒维数的计算小波分形技术原理与离散信号盒维数的计算设离散信号设离散信号 是是n维欧氏空间维欧氏空间Rn上的闭集。将上的闭集。将Rn划分划分成尽可能细的成尽可能细的网格,若是网格宽度网格,若是网格宽度N 为为的

    20、离散空间上的离散空间上集合集合X的网格计数。盒维数定义为的网格计数。盒维数定义为:XXjx,)(由于离散信号的最高分辩率为采样间隔由于离散信号的最高分辩率为采样间隔 t,所以上式的极,所以上式的极限是无法按其定义限是无法按其定义00求出。实际计算时一般采用近似方求出。实际计算时一般采用近似方法,即将法,即将网格视为最小网格,然后逐步放大为网格视为最小网格,然后逐步放大为k网格,网格,kZ+,令,令则网格宽度为则网格宽度为k的信号的信号x(j)的网格计数为的网格计数为 小波分形技术原理与离散信号盒维数的计算小波分形技术原理与离散信号盒维数的计算在在lg k lg Nk图中确定线性好的一段为信号无

    21、标度区图中确定线性好的一段为信号无标度区,如,如果无标度区的起点和终点分别为果无标度区的起点和终点分别为k1,k2,则在此区域内,应,则在此区域内,应该满足线性回归模型该满足线性回归模型 这样,用最小二乘法可求得信号这样,用最小二乘法可求得信号x(j)的盒维数为的盒维数为即盒维数是最小二乘法拟合直线斜率的估计值即盒维数是最小二乘法拟合直线斜率的估计值小波分解小波分解l次后第次后第i频带信号频带信号 的盒维数分别记为的盒维数分别记为 ,可,可以作为无量纲指标来描述振动信号在不同尺度下和不同频以作为无量纲指标来描述振动信号在不同尺度下和不同频带内的复杂性和不规则性,从而提取出故障出现时信号的带内的

    22、复杂性和不规则性,从而提取出故障出现时信号的非平稳特征。非平稳特征。)(,nxililBd,谐波小波轴心轨迹阵列的实现及其不规则度描述谐波小波轴心轨迹阵列的实现及其不规则度描述 某大型化肥厂某大型化肥厂CO2压缩机发生喘振时,高压缸水平方向(压缩机发生喘振时,高压缸水平方向(X方向)和垂直方向(方向)和垂直方向(Y方向)由涡流式位移传感器拾取的振方向)由涡流式位移传感器拾取的振动信号,转子转速动信号,转子转速6530r/min,采样频率,采样频率2000Hz,数据,数据长度长度1024点。点。轴心轨迹较为复杂且不规则,加之轴心轨迹较为复杂且不规则,加之较小的高倍工频分量影响使得轴心较小的高倍工

    23、频分量影响使得轴心轨迹有一些局部能量突变点,且其轨迹有一些局部能量突变点,且其分形盒维数也比较大。分形盒维数也比较大。谐波小波轴心轨迹阵列的实现及其不规则度描述谐波小波轴心轨迹阵列的实现及其不规则度描述X方向、方向、Y方向信号的第方向信号的第2层谐波小波包分解层谐波小波包分解 与第与第0频段合成频段合成轴心轨迹及其分形盒维数轴心轨迹及其分形盒维数第第0 0频段小波对应的是低频喘振、频段小波对应的是低频喘振、工频振动和二倍频振动的特征,工频振动和二倍频振动的特征,高倍工频分量影响已剔除,轴心高倍工频分量影响已剔除,轴心轨迹光滑度提高,不规则度减少,轨迹光滑度提高,不规则度减少,其分形盒维数其分形

    24、盒维数1.35361.3536相对原始轴相对原始轴心轨迹也有所减少心轨迹也有所减少谐波小波轴心轨迹阵列的实现及其不规则度描述谐波小波轴心轨迹阵列的实现及其不规则度描述第第3层谐波小波层谐波小波包分解后,第包分解后,第0、1频段合成轴心频段合成轴心轨迹及分形盒轨迹及分形盒维数维数 图图(d)(d)分形盒维数分形盒维数1.26041.2604较较前图有所减少,但其分形前图有所减少,但其分形盒维数为明显比正常机组盒维数为明显比正常机组大,这说明低频喘振的确大,这说明低频喘振的确是一种低频不平稳性振动。是一种低频不平稳性振动。图图(f)(f)的的1.35011.3501盒维数说明盒维数说明低频喘振不但

    25、自身是不平低频喘振不但自身是不平稳的晃动,而且影响着二稳的晃动,而且影响着二倍频区的稳定性,导致二倍频区的稳定性,导致二倍频区也有晃动现象发生倍频区也有晃动现象发生6.2 Laplace6.2 Laplace小波特征波形相关滤波小波特征波形相关滤波6.2.1 Laplace小波及其特性小波及其特性6.2.2 Laplace小波基函数相关滤波小波基函数相关滤波6.2.3 应用实例应用实例冲击响应信号检测的意义冲击响应信号检测的意义振动信号中出现冲击响应波形往往标志着旋转机械设备发生振动信号中出现冲击响应波形往往标志着旋转机械设备发生松动、碰撞、冲击等故障。如何从强大的工频振动、谐波振松动、碰撞、

    26、冲击等故障。如何从强大的工频振动、谐波振动和背景噪声中提取出冲击响应信号的发生时刻、振荡频率动和背景噪声中提取出冲击响应信号的发生时刻、振荡频率和阻尼比等参数对设备故障的诊断和定位至关重要。和阻尼比等参数对设备故障的诊断和定位至关重要。在往复机械中,活塞、连杆、气阀等运动部件对系统具有相在往复机械中,活塞、连杆、气阀等运动部件对系统具有相同的激励频率,在频谱上频率特征互相重叠,很难分辨。然同的激励频率,在频谱上频率特征互相重叠,很难分辨。然而,各个运动部件对系统施加的冲击并非同时发生,即相互而,各个运动部件对系统施加的冲击并非同时发生,即相互之间有一定的相位差,因此在时域上表现为一系列有一定时

    27、之间有一定的相位差,因此在时域上表现为一系列有一定时间间隔的冲击响应波形,每一个冲击频率与某个特定运动部间间隔的冲击响应波形,每一个冲击频率与某个特定运动部件相对应,如果将这些单个冲击响应波形提取出来,分别用件相对应,如果将这些单个冲击响应波形提取出来,分别用特征参数表示,即可对往复机械机构的状态进行趋势分析和特征参数表示,即可对往复机械机构的状态进行趋势分析和诊断,因此,冲击响应信号的提取对往复机械故障诊断意义诊断,因此,冲击响应信号的提取对往复机械故障诊断意义重大重大。LaplaceLaplace小波的引入小波的引入使用与信号波形最匹配的基函数对信号进行分解、提取出使用与信号波形最匹配的基

    28、函数对信号进行分解、提取出隐含故障特征是故障诊断专科门诊思想的精髓。隐含故障特征是故障诊断专科门诊思想的精髓。自从将小波分析引入到机械故障诊断领域以来,我们就一自从将小波分析引入到机械故障诊断领域以来,我们就一直在寻找一种小波,它在满足小波的基本条件的同时,应直在寻找一种小波,它在满足小波的基本条件的同时,应该具备与冲击响应信号类似的单边衰减性质。该具备与冲击响应信号类似的单边衰减性质。对一个二阶欠阻尼系统进行对一个二阶欠阻尼系统进行LaplaceLaplace反变换,反变换,Strang G.Strang G.构构造出了造出了LaplaceLaplace小波,该小波在复数空间内为螺旋衰减曲线

    29、,小波,该小波在复数空间内为螺旋衰减曲线,其实部和虚部与单自由度结构系统的自由衰减响应函数非其实部和虚部与单自由度结构系统的自由衰减响应函数非常相似。常相似。Lawrence C.FreudingerLawrence C.Freudinger等人将等人将LaplaceLaplace小波成功小波成功应用于无人驾驶飞机机翼模态参数的识别,取得了良好的应用于无人驾驶飞机机翼模态参数的识别,取得了良好的效果效果Laplace小波及其特性 其它 ,0,21stjtWteAett,st tRestst0 ,08.0 ,25sW与单自由度结构系统的自与单自由度结构系统的自由衰减响应函数非常相似由衰减响应函数

    30、非常相似紧支性是显而易,不具备紧支性是显而易,不具备正交性,其频域盒形不好,正交性,其频域盒形不好,故滤波特性较差故滤波特性较差 Laplace小波基函数库 课件下载地址课件下载地址unit.xjtu.edu/imea ,1 ,0,212121ZpRZnRZmRfffFpnmF,:,:Fftft离散网格空间离散网格空间 Laplace小波基函数库小波基函数库 称作称作Laplace小波基函数库的小波原子。小波基函数库的小波原子。集合集合F 相当于小波伸缩相当于小波伸缩集合集合T 相当于小波平移相当于小波平移集合集合Z 改变小波衰减形状改变小波衰减形状 t相关滤波法 cos,22xtxt 22,

    31、2xtxt max,fFf Hzf内积可以度量信号之间的相关性,若信号内积可以度量信号之间的相关性,若信号x(t)x(t)是某个系统是某个系统S S的的输出,通过计算输出,通过计算x(t)x(t)与与LaplaceLaplace小波原子的内积,可以估计它小波原子的内积,可以估计它们之间的相似性,从而得到们之间的相似性,从而得到S S的模态参数与的频率、阻尼特性的模态参数与的频率、阻尼特性的对应关系的对应关系,和匹配追踪的思想类似和匹配追踪的思想类似 000021 ,01.0 ,2sin00200tttntttnAttfetxnttf单自由度系统的脉冲响应信号单自由度系统的脉冲响应信号 st a

    32、 b c dsssHzf10004.00st 0001.0nA20:5.0:5F9.0:1.0:3.02.0:005.0:005.05:1.0:500 t10f04.0Laplace小波相关滤波方法具备在强大的噪声干扰中准确小波相关滤波方法具备在强大的噪声干扰中准确识别出脉冲响应信号频率的能力识别出脉冲响应信号频率的能力滤波法对频率参数较敏感滤波法对频率参数较敏感 相关滤波法也适合于识别多自由度系统的模态参数相关滤波法也适合于识别多自由度系统的模态参数 相关滤波法的计算量很大,为了减少计算量,加速计算相关滤波法的计算量很大,为了减少计算量,加速计算过程,过程,可可采用了二次相关滤波法采用了二次

    33、相关滤波法 转子试验台模态参数识别 a b c dstsss通过转子试验台的升速过程测得其一阶临界转速在通过转子试验台的升速过程测得其一阶临界转速在115118Hz内燃机缸盖振动信号识别 内燃机缸盖振动信号识别是进气阀关闭时刻,是进气阀关闭时刻,由此可以推断该缸由此可以推断该缸进气阀存在异常。进气阀存在异常。停机检修,发现停机检修,发现4号缸进气阀明显磨号缸进气阀明显磨损而导致漏气损而导致漏气,必必然导致较强的冲击然导致较强的冲击 大型水轮机轴系转动时一阶固有频率提取大型水轮机轴系转动时一阶固有频率提取 大型水轮发电机组转轴系统动态固有频率是大型水轮发电机组转轴系统动态固有频率是机组结构优化设

    34、计的重要技术指标。虽然动机组结构优化设计的重要技术指标。虽然动力学方法已经在水轮发电机组转轴系统分析力学方法已经在水轮发电机组转轴系统分析中得到广泛应用中得到广泛应用97-99,但简化处理后的力学,但简化处理后的力学模型是近似的,由其得到的结果和实际工程模型是近似的,由其得到的结果和实际工程对象往往存在很大的差别,因此,现场实测对象往往存在很大的差别,因此,现场实测机组轴系的固有频率具有十分重要的意义机组轴系的固有频率具有十分重要的意义 意义意义难点难点大型水轮发电机组转轴大型水轮发电机组转轴系为刚性转子,系为刚性转子,无法通多升降速测量固有频率无法通多升降速测量固有频率敲击产生的响应很微弱敲

    35、击产生的响应很微弱工作转速为工作转速为1.136Hz,轴,轴系转动时的一阶固有频率系转动时的一阶固有频率的理论计算值为的理论计算值为3.78Hz,试验估计值可能在试验估计值可能在34Hz之间之间 一次撞击振动信号识别一次撞击振动信号识别 多次撞击振动信号识别多次撞击振动信号识别 提高识别精度提高识别精度 从两种信号提取出的水轮机轴系固有频率(从两种信号提取出的水轮机轴系固有频率(3.44Hz、3.64Hz)不完全相等,主要原因是强大的工频振动对相关滤波精度造成不完全相等,主要原因是强大的工频振动对相关滤波精度造成的影响的影响。应用频带为应用频带为36Hz的谐波小波带通滤波器的谐波小波带通滤波器

    36、,将信号,将信号中的工频振动分量滤掉中的工频振动分量滤掉 小结小结冲击响应信号的有效提取和参数的正确识别对设备故障的诊断和定位至关重要。本章利用Laplace小波相关滤波法,建立了基于Laplace小波的冲击响应信号检测专科门诊。Laplace小波相关滤波法能够在强大噪声或其它干扰中准确捕捉到脉冲响应信号,识别出响应波形的参数。可以预测,Laplace小波相关滤波法在模态识别和设备故障诊断中具有良好的应用前景。6.3 Hermitian6.3 Hermitian连续小波变换与连续小波变换与 信号奇异性识别信号奇异性识别6.3.1 机械故障诊断中的奇异性机械故障诊断中的奇异性6.3.2 小波变换

    37、对信号奇异性检测的基本原理小波变换对信号奇异性检测的基本原理6.3.3 Hermitian小波的定义及特性研究小波的定义及特性研究6.3.4 Hermitian连续小波变换及分解结果的表达连续小波变换及分解结果的表达方式方式信号奇异性检测的意义信号奇异性检测的意义v机械设备由于局部异常而诱发的信号往往具有奇异性机械设备由于局部异常而诱发的信号往往具有奇异性(Singularity),它表现为突变、尖点等不规则的瞬变结构。),它表现为突变、尖点等不规则的瞬变结构。信号的奇异性包含了相应对象的重要状态特征信息,判断信号信号的奇异性包含了相应对象的重要状态特征信息,判断信号的奇异点出现时刻,并对信号

    38、奇异性实现科学的描述,在信号的奇异点出现时刻,并对信号奇异性实现科学的描述,在信号处理和故障诊断等领域具有重要的意义处理和故障诊断等领域具有重要的意义 v奇异性提取要求对信号进行局部化分析。由于小波分析具有奇异性提取要求对信号进行局部化分析。由于小波分析具有良好的时频良好的时频(尺度尺度)局部化能力,它很自然被引入到信号奇异局部化能力,它很自然被引入到信号奇异性分析领域性分析领域 v小波变换奇异性检测的研究工作主要包括两个方面:一是选小波变换奇异性检测的研究工作主要包括两个方面:一是选择或构造局部化分析能力强的小波,二是研究小波变换结果的择或构造局部化分析能力强的小波,二是研究小波变换结果的有

    39、效表达方式有效表达方式 小波变换对信号奇异性检测的基本原理小波变换对信号奇异性检测的基本原理 奇异性的定义奇异性的定义 数学上称无限次可导函数是光滑的或没有奇异性。若函数数学上称无限次可导函数是光滑的或没有奇异性。若函数在某处有间断点或某阶导数不连续,则称该函数在此处有在某处有间断点或某阶导数不连续,则称该函数在此处有奇异性,该点就是奇异点。信号的奇异性是由奇异点处的奇异性,该点就是奇异点。信号的奇异性是由奇异点处的李氏指数(李氏指数(Lipschitz Exponents,LE)来度量的)来度量的 小波变换的极值点、过零点与信号奇异小波变换的极值点、过零点与信号奇异性的联系性的联系 小波变换

    40、在奇异性检测中的进展小波变换在奇异性检测中的进展 GrossmannGrossmann采用采用MorletMorlet小波用于图像的边缘检测小波用于图像的边缘检测-20-100102000.20.40.60.8-4-2024-1-0.500.51t在支撑区域内在支撑区域内Morlet小波是多次振荡的小波是多次振荡的,根据根据Nyquist采样采样定理,在离散处理时需要较多的数据点来表达定理,在离散处理时需要较多的数据点来表达Morlet小波。小波。点数较多的滤波器必然会平滑掉信号中的部分奇异性点数较多的滤波器必然会平滑掉信号中的部分奇异性104,所以,奇异性检测需要振荡次数较少的小波,这正是本

    41、章所以,奇异性检测需要振荡次数较少的小波,这正是本章选择选择Hermitian小波的出发点小波的出发点 Mallat通过小波变换来求解LE,还研究了基于小波变换的奇异点信号重构,这些研究工作在信号压缩和图像识别中具有重大的贡献。然而,就机械故障诊断而言,我们所关心的问题是信号奇然而,就机械故障诊断而言,我们所关心的问题是信号奇异点的出现时刻和它的类型异点的出现时刻和它的类型。对信号的过渡点比较敏感,而对信号的过渡点比较敏感,而 则适合于识则适合于识别信号的极值点。若需要同时识别出信号的过渡点和极值别信号的极值点。若需要同时识别出信号的过渡点和极值点点,两者,两者不能兼顾。不能兼顾。lHarol

    42、d SzuHarold Szu创造性地将创造性地将 合并为合并为HermitianHermitian小小波。美中不足的是,波。美中不足的是,Harold SzuHarold Szu只通过小波变换相空间截面只通过小波变换相空间截面图(相图)来对信号奇异性进行识别,忽略了小波变换时间图(相图)来对信号奇异性进行识别,忽略了小波变换时间-尺度幅值图(幅图)所包含的重要信息,没有真正发挥出尺度幅值图(幅图)所包含的重要信息,没有真正发挥出HermitianHermitian小波的优点。小波的优点。HermitianHermitian小波的定义及特性研究小波的定义及特性研究-505-0.500.5t-1

    43、0-5051000.51-10-50510-101-10-50510-1012只需要少量离散点即可表达只需要少量离散点即可表达,具有很强的时域局部化能力具有很强的时域局部化能力能保证变换后信号奇异点的时间位置不变能保证变换后信号奇异点的时间位置不变 HermitianHermitian连续小波变换及分解结果的表达方式连续小波变换及分解结果的表达方式 连续小波变换连续小波变换l连续小波变换的幅图和相图连续小波变换的幅图和相图 时间尺度平面内时间尺度平面内分别分别用灰度图来描述用灰度图来描述 上面两个参数,上面两个参数,就构造了就构造了的幅图和相图的幅图和相图幅图和相图的黑、灰、白分别对应小、中、

    44、大幅图和相图的黑、灰、白分别对应小、中、大 考虑到考虑到Hermitian小波实部对信号极值点的识别能力小波实部对信号极值点的识别能力,本章在绘本章在绘制幅图时使用了制幅图时使用了小波变换的小波变换的实部实部 两个正弦叠加信号两个正弦叠加信号 瞬时相位从 跳到正峰值负峰值模拟信号分析模拟信号分析 准脉冲信号奇异性的识别 含有小准脉冲的正弦信号奇异性识别 Morlet小波小波对上面对上面信号进行变换结果信号进行变换结果 幅图清晰反映信号幅图清晰反映信号的周期性的周期性相图中对准脉冲的相图中对准脉冲的反映很不清楚,在反映很不清楚,在低尺度下,相图出低尺度下,相图出现明显的分岔,因现明显的分岔,因此

    45、,此,Morlet小波不小波不善于在噪声环境中善于在噪声环境中提取信号的奇异性提取信号的奇异性 应用实例齿轮箱止推夹板端面摩擦故障分析应用实例齿轮箱止推夹板端面摩擦故障分析 分析对象分析对象电机转速49.75Hz,增速比4.28125 振动现象振动现象 97年3月大修后开机,发现齿轮箱振动剧烈,并伴随尖叫声 空分机5#轴承座振动信号 波形表现为强烈的高波形表现为强烈的高频振动。频谱中无法频振动。频谱中无法看到齿轮箱高速轴工看到齿轮箱高速轴工频谱线,而是出现频谱线,而是出现1480Hz、2960Hz和和4231Hz三处较为集中三处较为集中的谱峰,其边频带宽的谱峰,其边频带宽度都为工频度都为工频2

    46、13Hz,与机组的啮合频率、与机组的啮合频率、风机叶片转频比较,风机叶片转频比较,上述三个频率无一对上述三个频率无一对应。应。故障原因分析 幅图出现了幅图出现了7个相似的等间隔的明暗区域,而图个相似的等间隔的明暗区域,而图(a)恰好包恰好包含了含了7个回转周期。在频谱中被淹没的工频振动信息在小波个回转周期。在频谱中被淹没的工频振动信息在小波变换幅图中很好地反映出来,再次体现了利用幅图进行多变换幅图中很好地反映出来,再次体现了利用幅图进行多尺度分析的优越性。尺度分析的优越性。在尺度在尺度3.56的范围的范围内相图中等间隔出现内相图中等间隔出现了了7个向上的白色箭形个向上的白色箭形区域。说明在这些

    47、时区域。说明在这些时刻刻5#轴承座振动信号轴承座振动信号中出现了准脉冲奇异中出现了准脉冲奇异点。点。故障排除和维修故障排除和维修 重新装配齿轮箱,保证止推夹板和大齿轮端面的平行。重新装配齿轮箱,保证止推夹板和大齿轮端面的平行。去掉止推夹板,将小齿轮轴承改为推力轴承来承担轴向力。去掉止推夹板,将小齿轮轴承改为推力轴承来承担轴向力。受条件限制,方法受条件限制,方法2无法实现,厂方在重新装配齿轮箱时打无法实现,厂方在重新装配齿轮箱时打磨了止推夹板与大齿轮的接触面,开机后振动明显降低,尖磨了止推夹板与大齿轮的接触面,开机后振动明显降低,尖叫声消失。叫声消失。小齿轮每旋转小齿轮每旋转1圈,将会导致止推夹板和大齿轮端面较强烈圈,将会导致止推夹板和大齿轮端面较强烈的接触摩擦的接触摩擦1次,从而对齿轮箱产生冲击次,从而对齿轮箱产生冲击

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:现代信号处理第6章连续小波变换课件.ppt
    链接地址:https://www.163wenku.com/p-3310046.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库