独立性检验的基本思想及其初步应用优秀课件1.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《独立性检验的基本思想及其初步应用优秀课件1.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 独立性 检验 基本 思想 及其 初步 应用 优秀 课件
- 资源描述:
-
1、新课标人教版课件系列新课标人教版课件系列数学选修1-21.2独立性检验的基本思想及其初步应用审校:王伟教学目标教学目标 1理解独立性检验的基本思想 2、会从列联表、柱形图、条形图直观判断吸烟与患癌有关。3、了解随机变量K2的含义。理解独立性检验的基本思想及实施步骤。理解独立性检验的基本思想及实施步骤。教学重点教学重点:理解独立性检验的基本思想。独立性检验的步骤。教学难点教学难点;1、理解独立性检验的基本思想;2、了解随机变量K2的含义;独立性检验的步骤。看到这个课题,你能想到什么?案案 例例:某医疗机构为了了解呼吸道疾病与吸:某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调
2、查了烟是否有关,进行了一次抽样调查,共调查了515515个成年人,其中吸烟者个成年人,其中吸烟者220220人,不吸烟者人,不吸烟者295295人。人。调查结果调查结果:吸烟的:吸烟的220220人中有人中有3737人患呼吸道疾人患呼吸道疾病,病,183183人未患呼吸道疾病;不吸烟的人未患呼吸道疾病;不吸烟的295295人人中有中有2121人患病,人患病,274274人未患病。人未患病。根据这些数据,能否断定:患呼吸道疾病与吸烟有关?数据整理患病患病未患病未患病合计合计吸烟吸烟不吸烟不吸烟合计合计372158183274457220295515问题:判断的标准是什么?吸烟与不吸烟,患病的可能
3、性的大小是否有差异?频率估计概率患 病未患病合 计(n)吸 烟16.82%83.18%100%(220)不吸烟7.12%92.88%100%(295)通过图形直观判断通过图形直观判断不患病不患病比例比例患病患病比例比例解决问题:直观方法吸烟的患病率不吸烟的患病率37/220 16.82%21/295 7.12%根据统计分析的思想,用频率估计概率可知,吸烟者与不吸烟者患病的可能性存在差异。你能有多大把握认为“患病与吸烟有关”呢?有一个颠扑不破的真理,那就是当我们不能确定什么是真的时,我们就应该去探求什么是最可能的。笛卡尔能否用数量来刻画能否用数量来刻画“有关有关”程度程度问题的数学表述“患呼吸道
4、疾病与吸烟有关患呼吸道疾病与吸烟有关”这句话是什么意思?这句话是什么意思?“某成年人吸烟某成年人吸烟”记为事件记为事件A,“某成年人患病某成年人患病”记为事记为事件件B 这句话的意思是:事件这句话的意思是:事件A与事件与事件B有关。有关。问题的另一面是:事件问题的另一面是:事件A与事件与事件B独立。独立。患病患病未患病未患病合计合计吸烟吸烟不吸烟不吸烟合计合计372158183274457220295515一般化:P(A)、P(B)不知道,怎么办?频率估计概率P(A)nbaP(B)nca P(AB)nbanca同理,吸烟但不患病的人数约为nbandbn 由此估计:吸烟且患病的人数约为 n nb
5、anca不吸烟但患病的人数约为ndcncan 不吸烟也不患病的人数约为ndcndbn 怎样估计实际观测值与理论估计值的误差?采用如下的量(称为2 统计量)来刻画这个差异:2()ab acannnab acnnn+2()ab bdbnnnab bdnnn+2()cd accnnncd acnnn 2()cd bddnnncd bdnnn+化简得=2)()()()(2dbcbcababcadn2统计量2 11.8634解决问题的思路 思路:反证法思想(1)假设:H0:患病与吸烟无关 即 P(A)P(B)=P(AB)(2)在 H0成立的条件下进行推理(3)如果实际观测值与由(2)推出的值相差不大,则
6、可以认为这些差异是由随机误差造成的,假设H0不能被否定;否则,假设H0不能被接受反证法原理与假设检验原理反证法原理:在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立。假设检验原理:在一个已知假设下,如果推出一个小概率事件发生,则推断这个假设不成立的可能性很大。一般地,对于两个研究对象一般地,对于两个研究对象和和,有两类有两类取值,即类取值,即类A A和和B B(如吸烟与不吸烟);(如吸烟与不吸烟);也有两类也有两类取值,即类取值,即类1 1和和2 2(如患病与不患病)。于是得到(如患病与不患病)。于是得到下列联表所示的抽样数据:下列联表所示的抽样数据:类类1 1类类2 2总计总计类类
7、A Aa ab ba+ba+b类类B Bc cd dc+dc+d总计总计a+ca+cb+db+da+b+c+da+b+c+d要推断要推断“和和有关系有关系”,可按下面的步骤进行:,可按下面的步骤进行:(1 1)提出假设)提出假设H H0 0 :和和没有关系;没有关系;(3 3)查对临界值,作出判断。)查对临界值,作出判断。(2 2)根据)根据2 2 2 2列联表与公式计算列联表与公式计算 的值;的值;2 由于抽样的随机性,由样本得到的推断由于抽样的随机性,由样本得到的推断有可能正确,也有可能错误。利用有可能正确,也有可能错误。利用 进行进行独立性检验,可以对推断的正确性的概率作独立性检验,可以
8、对推断的正确性的概率作出估计,样本量出估计,样本量n n越大,估计越准确。越大,估计越准确。20.50.4 0.250.150.10.050.0250.010.0050.001xo0.4550.7081.3232.0722.7063.8415.0246.6357.87910.82820()Px卡方临界值表:卡方临界值表:则有则有99.9%99.9%的把握认为的把握认为“与与有关系有关系”;(1)1)若观测值若观测值2 210.828.10.828.(3)3)若观测值若观测值2 22.7062.706,则,则(4)4)若观测值若观测值2 22.7062.706,则,则(2)2)若观测值若观测值2
9、 26.6356.635,则有则有99%99%的把握认为的把握认为“与与有关系有关系”;则有则有90%90%的把握认为的把握认为“与与有关系有关系”;则没有充分的证据显示则没有充分的证据显示“与与有关有关系系”,但也不能作出结论,但也不能作出结论“H H0 0成立成立”,即即与与没有关系。没有关系。例2:为研究不同的给药方式(口服与注射)和药的效果(有效和无效)是否有关,进行了相应的抽样调查,调查的结果列在下表中,根据所选择的193个病人的数据,能否作出药的效果与给药方式有关的结论?有效有效无效无效合计合计口服口服584098注射注射643195合计合计12271193解:提出假设 H0:药的
展开阅读全文