物理光学第二章光波的叠加与分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《物理光学第二章光波的叠加与分析课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物理光学 第二 光波 叠加 分析 课件
- 资源描述:
-
1、 前言前言1波的独立传播和叠加原理波的独立传播和叠加原理 2两束同频振动方向平行的标量波的叠加两束同频振动方向平行的标量波的叠加 3两束同频振动方向垂直的标量波的叠加两束同频振动方向垂直的标量波的叠加 4 不同频率的两个平面单色波的叠加不同频率的两个平面单色波的叠加 5光波的分析光波的分析前前 言言 首先讲述作为首先讲述作为矢量波矢量波的光波,在某些情况下可看作的光波,在某些情况下可看作标标量波量波;光波在空间传播时在一些特定条件下满足;光波在空间传播时在一些特定条件下满足独立独立传播原理传播原理 进而介绍关于进而介绍关于光的叠加原理光的叠加原理。在此基础上,作为特殊。在此基础上,作为特殊情况
2、,讲解两束光波在不同情况下的情况,讲解两束光波在不同情况下的叠加结果叠加结果:规律、:规律、概念及应用。概念及应用。几束简单几束简单的光波的光波 复杂的复杂的光波光波 叠加叠加 分解分解第一节第一节 波的独立传播和叠加原理波的独立传播和叠加原理 一、标量波和矢量波一、标量波和矢量波 光波是光波是横波横波,选择传播方向为直角坐标系的,选择传播方向为直角坐标系的z方向,则方向,则矢量就变成了矢量就变成了二维矢量二维矢量,可将之分解为,可将之分解为x,y方向的分量方向的分量EB描述光波的物理量描述光波的物理量 和和 是矢量是矢量光波本质上是矢量波光波本质上是矢量波 若光波传播的媒质对这两个方向上的分
3、量有相同的性质,若光波传播的媒质对这两个方向上的分量有相同的性质,则这两个分量有相同的传播规律,于是任一个分量的波则这两个分量有相同的传播规律,于是任一个分量的波函数就可代表其对应的矢量波,则矢量波的处理变为标函数就可代表其对应的矢量波,则矢量波的处理变为标量波处理。量波处理。波的独立传波的独立传播原理:播原理:当当两列波或多两列波或多列波在同一列波在同一波场中传播波场中传播时,每一列时,每一列波的传播方波的传播方式都不因其式都不因其他波的存在他波的存在而受到影响而受到影响注意:注意:波的叠加原理和独立性原理成立于线性介质中波的叠加原理和独立性原理成立于线性介质中二、波的独立传播原理二、波的独
4、立传播原理 三、光波的叠加原理和线性媒质三、光波的叠加原理和线性媒质 光波叠加原理的数学基础:光波叠加原理的数学基础:如果光波如果光波 和和 都是方程都是方程 的解,的解,则它们的线性叠加则它们的线性叠加 也显然是该方程也显然是该方程的解,并且构成一个复杂的波的解,并且构成一个复杂的波微分波动方程的解的叠加性,构成了光波叠加原理的数学微分波动方程的解的叠加性,构成了光波叠加原理的数学基础基础。),(1trE),(2trE222tEE11223(,)(,)C E r tC E r tC当存在两个或多个光波同时传播时,如果光波的独立传播当存在两个或多个光波同时传播时,如果光波的独立传播原理成立,则
5、它们叠加的空间区域内,每一点的扰动将等原理成立,则它们叠加的空间区域内,每一点的扰动将等于各个光波单独存在时该点的扰动之和。这就是于各个光波单独存在时该点的扰动之和。这就是光波的叠光波的叠加原理,即加原理,即 真空中,光波叠加原理普遍成立真空中,光波叠加原理普遍成立媒质中,光波电磁场与媒质内部物质的相互作用满足线性媒质中,光波电磁场与媒质内部物质的相互作用满足线性条件时,光波叠加原理成立。条件时,光波叠加原理成立。当光强很强时,光与介质相当光强很强时,光与介质相互作用产生了非线性光学效应,光的叠加原理不再成立互作用产生了非线性光学效应,光的叠加原理不再成立 光波叠加原理的成立也是有条件光波叠加
6、原理的成立也是有条件的的 媒质分为媒质分为线性媒质线性媒质和和非线性媒质非线性媒质 线性媒质:线性媒质:波在其中传播时服从叠加原理和独立传播原理波在其中传播时服从叠加原理和独立传播原理的媒质的媒质非线性媒质:非线性媒质:波在其中传播时不服从叠加原理和独立传播波在其中传播时不服从叠加原理和独立传播原理的媒质原理的媒质一、一、同向传播的平面波的叠加同向传播的平面波的叠加假设有两个简谐平面波,其时间频率为假设有两个简谐平面波,其时间频率为,振幅分别为,振幅分别为E10和和E20,初始位相分别为,初始位相分别为 和和 ,传播方向沿着,传播方向沿着z轴,它轴,它们被表示为:们被表示为:第二节第二节 两束
7、同频振动方向平行的两束同频振动方向平行的标量波的叠加标量波的叠加 本节讨论两个频率相同、振动方向平行的光波的叠加,显然这本节讨论两个频率相同、振动方向平行的光波的叠加,显然这两个光波可视作标量波,于是问题就是两个光波可视作标量波,于是问题就是两个标量波叠加两个标量波叠加的问题的问题 102011010expEEi kzt22020expEEi kzt这两个光波叠加后的合成波可以表示为:这两个光波叠加后的合成波可以表示为:10102020,expexpE z tEi kztEi kzt(2.2.1)10102020expexpexpEiEii kzt0expEi kzt(2.2.2)010102
8、020expexpEEiEi1010202010102020coscossinsinEEi EE00expEi其中:其中:21102020102202100)cos(2|EEEEEcoscossinsinarctan20201010202010100EEEE(2.2.3)(2.2.4)上式中:上式中:由以上分析得到合成波的表达式为:由以上分析得到合成波的表达式为:表明:表明:合成波还是一个与分量波合成波还是一个与分量波时间频率相同,传播方向相同时间频率相同,传播方向相同,其,其它空间、时间参量以及它空间、时间参量以及位相速度都没有变化位相速度都没有变化的简谐平面波,的简谐平面波,只是有了新的振
9、幅和初位相,只是有了新的振幅和初位相,而且合成波的振幅和位相均取而且合成波的振幅和位相均取决于分量波的振幅和初始位相。决于分量波的振幅和初始位相。00(,)|expE z tEi kzt当当E E1010=E E2020时,由(时,由(2.2.3 2.2.3)有)有 2/)cos(2|1020100 EE可见,此时合成波的振幅取决于两个分量波的位相差可见,此时合成波的振幅取决于两个分量波的位相差 当当E E1010=E E2020时,由(时,由(2.2.4 2.2.4)得:)得:2/)(20100可见,合成波的初位相等于两个分量波初位相的平均值可见,合成波的初位相等于两个分量波初位相的平均值
10、当当E E1010=E E2020时,总的合成波函数为时,总的合成波函数为所以,当所以,当E E1010=E E2020且且1010=2020时,合成波与分量波振动状态时,合成波与分量波振动状态相同,只是振幅增大一倍相同,只是振幅增大一倍 而在而在10-20=情况下,可知合成振幅为零。情况下,可知合成振幅为零。1010201020,2cos2 exp2E z tEi kzt物物 理理 光光 学学2022-8-142022-8-14两列波在空间相遇的情况两列波在空间相遇的情况波的独立传播原理:波的独立传播原理:几列波在相遇点所引起的扰动是各列波在该点所几列波在相遇点所引起的扰动是各列波在该点所引
11、起的扰动的叠加(矢量的线性叠加,矢量和)引起的扰动的叠加(矢量的线性叠加,矢量和)当两个或多个光波在空间相遇时,如果振动不是十当两个或多个光波在空间相遇时,如果振动不是十分强,各列波将保持各自的特性不变,继续传播。分强,各列波将保持各自的特性不变,继续传播。相互之间没有影响。相互之间没有影响。波的叠加原理波的叠加原理成立条件成立条件1)、传播介质为线性介质;、传播介质为线性介质;2)、振动不是十分强,在振动很强的时候,线性介质会变为、振动不是十分强,在振动很强的时候,线性介质会变为非线性介质;非线性介质;注意注意波的叠加不是强度的叠加,也不是振幅的简单相波的叠加不是强度的叠加,也不是振幅的简单
12、相加,而是振动矢量的叠加加,而是振动矢量的叠加线性媒质:线性媒质:波在其中传播时服从叠加原理和独立传播原理波在其中传播时服从叠加原理和独立传播原理的媒质的媒质非线性媒质:非线性媒质:波在其中传播时不服从叠加原理和独立传播波在其中传播时不服从叠加原理和独立传播原理的媒质原理的媒质一、一、同向传播的平面波的叠加同向传播的平面波的叠加假设有两个简谐平面波,其时间频率为假设有两个简谐平面波,其时间频率为相同相同,振幅分别为,振幅分别为E10和和E20,初始位,初始位相分别为相分别为 和和 ,振动方向平行振动方向平行,传播方向沿着传播方向沿着 z 轴轴,它们被表示为:,它们被表示为:102011010e
13、xpEEi kzt22020expEEi kzt010102020expexpEEiEi00expEi12220102010202010|2cos()EEEE E10102020010102020sinsinarctancoscosEEEE上式中上式中:10102020expexp,expE z ti kzEiEit0exp i kztE其中其中:二、反向传播的平面波的叠加二、反向传播的平面波的叠加驻波及其实验驻波及其实验(1)、驻波波函数、驻波波函数假设两个简谐平面标量波的时间频率为假设两个简谐平面标量波的时间频率为,振幅分别,振幅分别E10和和E20,初始位相为,初始位相为 和和 ,一列波
14、沿着一列波沿着z轴正向传播轴正向传播另一列沿另一列沿z轴负向传播,轴负向传播,假定假定E10=E20=E0,即有:,即有:合成波各点都按照圆频率合成波各点都按照圆频率做简谐振动,但是此合成波有做简谐振动,但是此合成波有其固有的特点其固有的特点201010expEEi kzt2020expkzEEit10010020,expexpE z tEi kztEikzt0201020102cos2 exp2ktEiz叠加后的合成波可以表示为叠加后的合成波可以表示为:表示:表示:(1)对某一对某一Z点,点,E随时间以频率随时间以频率作简谐振动,某一时刻,作简谐振动,某一时刻,振幅随振幅随Z不同而变(振幅不
15、是常数)不同而变(振幅不是常数);020201010(,2cos2 exp2)itkEtEzz(2)称振幅最大值和最小值的位置为波腹、波节的位置,它称振幅最大值和最小值的位置为波腹、波节的位置,它们不随时间而变们不随时间而变 ;波腹位置波腹位置:(m为整数为整数)波节位置波节位置:(m为整数为整数)20102kzm201021 2kzm(3)相邻波腹(或波节)之间距为相邻波腹(或波节)之间距为/2,相邻波腹与波节间距,相邻波腹与波节间距为为/4;(4)合成波的位相因子与空间坐标位置合成波的位相因子与空间坐标位置z无关无关。(6)(6)因因 的取值可正可负,所以在每一波的取值可正可负,所以在每一
16、波节两边的点,其振动是反相的节两边的点,其振动是反相的(5)(5)驻波的位相因子与驻波的位相因子与z无关,不存在位相的传播问题,故把无关,不存在位相的传播问题,故把这种波称为驻波,反之称为行波。这种波称为驻波,反之称为行波。2010cos2kz驻波:驻波:由于节点静止不动,所以波形没有传播。能量以由于节点静止不动,所以波形没有传播。能量以动能和势能的形式交换储存,亦传播不出去。动能和势能的形式交换储存,亦传播不出去。驻波驻波当两个分量波的振幅不相等时,例如,当两个分量波的振幅不相等时,例如,E10=E20+E,则有,则有合成波合成波是一个是一个驻波和行波之和驻波和行波之和,因此合成波在波节处振
17、幅不再因此合成波在波节处振幅不再为零,波节处的振动完全是由行波引起的,其它考察点的振幅为零,波节处的振动完全是由行波引起的,其它考察点的振幅则由行波和驻波共同引起的,并且由于行波的存在,则由行波和驻波共同引起的,并且由于行波的存在,将会有能将会有能量的传播。量的传播。010201020,2cos2 exp2E z tEkzitkz10expEitkz(2)(2)、驻波实验、驻波实验 实验装置如右图所示。实验装置如右图所示。M是镀银是镀银的平面反射镜,的平面反射镜,I是正入射到镜面是正入射到镜面上的单色简谐平面波,经反射后上的单色简谐平面波,经反射后得到反射波得到反射波R。G是一块极薄的感是一块
18、极薄的感光乳胶底片,它与镜面间有一微光乳胶底片,它与镜面间有一微小夹角。小夹角。I和和R形成驻波,形成驻波,G位于这个驻波位于这个驻波场中,经感光和显影,场中,经感光和显影,在在G上呈上呈现亮暗相间的条纹,相邻亮条纹现亮暗相间的条纹,相邻亮条纹(或暗条纹或暗条纹)之间的距离按图示的几之间的距离按图示的几何关系与何关系与/2相对应相对应MIRG/2/2/2/4维纳实验维纳实验底片底片G上感光的位置应该是驻波波腹的位置。上感光的位置应该是驻波波腹的位置。三、任意方向传播的平面波的叠加三、任意方向传播的平面波的叠加 上面两部分只考虑了两束光波的传播方向在一条直线上的上面两部分只考虑了两束光波的传播方
19、向在一条直线上的情况,分量波与合成波的空间分布比较简单,只和空间变情况,分量波与合成波的空间分布比较简单,只和空间变量量 z 有关。现在考虑两个有关。现在考虑两个时间频率相同时间频率相同、振动方向平行的振动方向平行的简谐平面光波不共线传播相遇叠加的情况。简谐平面光波不共线传播相遇叠加的情况。维纳实验证明:维纳实验证明:1、驻波的存在、驻波的存在维纳实验发现,紧贴镜面处的底片没有感光,而感光条维纳实验发现,紧贴镜面处的底片没有感光,而感光条纹的位置都与电场波腹位置相一致。纹的位置都与电场波腹位置相一致。维纳实验证明:维纳实验证明:2、乳胶感光的是光的电场而不是磁场、乳胶感光的是光的电场而不是磁场
20、两个频率相同、振动方向两个频率相同、振动方向平行的简谐平面光波不共线平行的简谐平面光波不共线传播相遇叠加传播相遇叠加zk1zk2xk2zxk1k1xE1k2E2O设两个分量波的频率都为设两个分量波的频率都为,振幅分别为,振幅分别为E10和和E20,初始位相,初始位相为为 和和 ,波矢分别为,波矢分别为k1和和k2,则它们的波函数可以表示成,则它们的波函数可以表示成如下如下:对于叠加区域,如图所示选取坐标系对于叠加区域,如图所示选取坐标系Oxyz,y 轴方向垂直于轴方向垂直于纸面向外。假设振动方向沿着纸面向外。假设振动方向沿着y方向,分量波的波矢方向,分量波的波矢 k1 和和 k2均平行于均平行
21、于xz平面,平面,注意,这时所有的函数都与注意,这时所有的函数都与 y 坐标无关。坐标无关。10201101110,expxzEx z tEi k xk zt2202220,expxzEx z tEi k xk zt叠加后的合成波可以表示为叠加后的合成波可以表示为:E(x,z,t)=E1(x,z,t)+E2(x,z,t)=E0exp(-it)其中:其中:E0=E10expi(k1xx+k1zz+)+E20expi(k2xx+k2zz+)=|E0|exp(i )而且有:而且有:211020121220102202100)()()cos(2|zkkxkkEEEEEzzxx)cos()cos()si
22、n()sin(arctan2022201011102022201011100zkxkEzkxkEzkxkEzkxkEzxzxzxzx10200其中:其中:21xxxkkk21zzzkkk2010212xxxkkk212zzzkkk201002合成波与前面所讨论到的合成波都不一样:合成波与前面所讨论到的合成波都不一样:1 1、振幅分布上有驻波的特点;、振幅分布上有驻波的特点;2 2、位相上有行波的特点;、位相上有行波的特点;3 3、其时间频率仍然是、其时间频率仍然是不变不变 01002cos()2(,)exp22()xzxzkkExzE x z tj k xk zt考虑当考虑当E10=E20时的
23、特殊情况,有时的特殊情况,有 第三节第三节 两束同频振动方向垂直的两束同频振动方向垂直的标量波的叠加标量波的叠加 假定两束光沿着假定两束光沿着z轴方向传播,而其振动方向分别与轴方向传播,而其振动方向分别与x、y轴方向相同,设这两束光波的波函数如下轴方向相同,设这两束光波的波函数如下:其中的其中的 、是直角坐标系是直角坐标系Oxyz中中x、y方向上的单位方向上的单位矢量。两束光波叠加,合成波函数矢量。两束光波叠加,合成波函数 为:为:xe ye 12EEE11010(,)cos()xE z te Ekzt22020(,)cos()yEz te Ekzt(2.3.1)(2.3.2)E显然合成波在显
24、然合成波在xy平面内,其方向垂平面内,其方向垂直于传播方向直于传播方向z轴,但是一般而言它轴,但是一般而言它不再与不再与x或或y轴同向。如右图所示,轴同向。如右图所示,E 与与x轴的夹角轴的夹角满足:满足:合成波与分量波矢量合成波与分量波矢量2020211010cos()|cos()EkztEtgEEkzt显然显然是是 z和和 t 的函数,的函数,E 的方向一般是不固定的,将随着的方向一般是不固定的,将随着 z和和 t 而变化而变化,利用利用(2.3.1)和和(2.3.2),消去,消去(kz-t),得得:其中其中22212122210201020|2cossinEEEEEEE E1020(2.
25、3.3)右图中画出了右图中画出了kz-t为某一确定值时的为某一确定值时的 E 以及它与以及它与 x 轴的夹角,轴的夹角,这个椭圆既可这个椭圆既可以理解为以理解为1、位置、位置 z 确定时确定时 E 的端点随着时间的端点随着时间t的的变化轨迹;变化轨迹;2、时间、时间 t 确定时确定时 E 的端点随着位置的端点随着位置 z 的变化轨迹在的变化轨迹在x-y平面上的投影,后者平面上的投影,后者实际上是一条空间螺旋线实际上是一条空间螺旋线由式(2.3.3)可知,随着 z 或 t 的变化,合成波矢量的端点在 x-y 平面(或者垂直于 z 轴的平面)上形成一个椭圆形轨迹。于是称振动方向互相垂直的同频同向传
展开阅读全文