计量经济学(英文版).课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《计量经济学(英文版).课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 英文 课件
- 资源描述:
-
1、第1页,共69页。yt =household weekly food expendituresSimple Linear Regression Modelyt =b1+b2 x t +e tx t =household weekly incomeFor a given level of x t,the expectedlevel of food expenditures will be:E(yt|x t)=b1+b2 x t4.2第2页,共69页。1.yt =b1+b2x t +e t2.E(e t)=0 E(yt)=b1+b2x t 3.var(e t)=s 2 =var(yt)4.cov(
2、e i,e j)=cov(yi,yj)=05.x t c for every observation6.e tN(0,s 2)ytN(b1+b2x t,s 2)Assumptions of the SimpleLinear Regression Model4.3第3页,共69页。The population parameters b1 and b2are unknown population constants.The formulas that produce thesample estimates b1 and b2 arecalled the estimators of b1 and b
3、2.When b0 and b1 are used to representthe formulas rather than specific values,they are called estimators of b1 and b2which are random variables becausethey are different from sample to sample.4.4第4页,共69页。If the least squares estimators b0 and b1are random variables,then what are theirmeans,variance
4、s,covariances andprobability distributions?Compare the properties of alternative estimators to the properties of the least squares estimators.Estimators are Random Variables(estimates are not)4.5第5页,共69页。The Expected Values of b1 and b2 The least squares formulas(estimators)in the simple regression
5、case:b2=nSxiyi-Sxi SyinSxi2-(Sxi)2 2b1=y -b2xwhere y=Syi/n and x=Sx i/n (4.1a)(4.1b)4.6第6页,共69页。Substitute in yi =b1+b2xi +e ito get:b2=b2 +nSxiei-Sxi SeinSxi-(Sxi)22The mean of b2 is:Eb2=b2 +nSxiEei-Sxi SEeinSxi-(Sxi)22Since Eei=0,then Eb2=b2.4.7第7页,共69页。The result Eb2=b2 means thatthe distribution
6、 of b2 is centered at b2.Since the distribution of b2 is centered at b2,we say thatb2 is an unbiased estimator of b2.An Unbiased Estimator 4.8第8页,共69页。The unbiasedness result on the previous slide assumes that weare using the correct model.If the model is of the wrong formor is missing important var
7、iables,then Eei=0,then Eb2=b2.Wrong Model Specification 4.9第9页,共69页。Unbiased Estimator of the Intercept In a similar manner,the estimator b1of the intercept or constant term can beshown to be an unbiased estimator of b1 when the model is correctly specified.Eb1=b14.10第10页,共69页。b2=nSxiyi-Sxi SyinSxi-
8、(Sxi)22(4.3b)(4.3a)Equivalent expressions for b2:Expand and multiply top and bottom by n:b2=S(xi-x)(yi-y)S(xi-x)24.11第11页,共69页。Variance of b2 Given that both yi and ei have variance s s 2,the variance of the estimator b2 is:b2 is a function of the yi values butvar(b2)does not involve yi directly.S(x
9、 i-x)s s 22var(b2)=4.12第12页,共69页。Variance of b1 nS(x i-x)2var(b1)=s s 2Sx i2the variance of the estimator b1 is:b1=y -b2xGiven4.13第13页,共69页。Covariance of b1 and b2 S(x i-x)2cov(b1,b2)=s s2-x If x=0,slope can change without affectingthe variance.4.14第14页,共69页。What factors determine variance and covar
10、iance?1.s s 2:uncertainty about yi values uncertainty about b1,b2 and their relationship.2.The more spread out the xi values are then the more confidence we have in b1,b2,etc.3.The larger the sample size,n,the smaller the variances and covariances.4.The variance b1 is large when the(squared)xi value
11、s are far from zero(in either direction).5.Changing the slope,b2,has no effect on the intercept,b1,when the sample mean is zero.But if sample mean is positive,the covariance between b1 and b2 will be negative,and vice versa.4.15第15页,共69页。Gauss-Markov Theorem Under the first five assumptions of the s
12、imple,linear regression model,the ordinary least squares estimators b1 and b2 have the smallest variance of all linear and unbiased estimators of b1 and b2.This means that b1and b2 are the Best Linear Unbiased Estimators (BLUE)of b1 and b2.4.16第16页,共69页。implications of Gauss-Markov1.b1 and b2 are“be
13、st”within the class of linear and unbiased estimators.2.“Best”means smallest variance within the class of linear/unbiased.3.All of the first five assumptions must hold to satisfy Gauss-Markov.4.Gauss-Markov does not require assumption six:normality.5.G-Markov is not based on the least squares princi
14、ple but on b1 and b2.4.17第17页,共69页。G-Markov implications(continued)6.If we are not satisfied with restricting our estimation to the class of linear and unbiased estimators,we should ignore the Gauss-Markov Theorem and use some nonlinear and/or biased estimator instead.(Note:a biased or nonlinear est
15、imator could have smaller variance than those satisfying Gauss-Markov.)7.Gauss-Markov applies to the b1 and b2 estimators and not to particular sample values(estimates)of b1 and b2.4.18第18页,共69页。Probability Distribution of Least Squares Estimators b2 N b2,S(xi-x)s s 22b1 N b1,nS(x i-x)2s s 2 Sxi24.1
16、9第19页,共69页。yi and e i normally distributed The least squares estimator of b2 can beexpressed as a linear combination of yis:b2=S wi yi b1=y -b2x S(x i-x)2where wi=(x i-x)This means that b1and b2 are normal sincelinear combinations of normals are normal.4.20第20页,共69页。normally distributed under The Ce
17、ntral Limit TheoremIf the first five Gauss-Markov assumptionshold,and sample size,n,is sufficiently large,then the least squares estimators,b1 and b2,have a distribution that approximates thenormal distribution with greater accuracythe larger the value of sample size,n.4.21第21页,共69页。Consistency We w
18、ould like our estimators,b1 and b2,to collapse onto the true population values,b1 and b2,as sample size,n,goes to infinity.One way to achieve this consistency property is for the variances of b1 and b2 to go to zero as n goes to infinity.Since the formulas for the variances of the least squares esti
19、mators b1 and b2 show that their variances do,in fact,go to zero,then b1 and b2,are consistent estimators of b1 and b2.4.22第22页,共69页。Estimating the variance of the error term,s s 2et =yt-b1-b2 x tSett=1T2n-2s 2 2 =s 2 2 is an unbiased estimator of s 2 4.23第23页,共69页。The Least Squares Predictor,yo Giv
20、en a value of the explanatory variable,Xo,we would like to predicta value of the dependent variable,yo.The least squares predictor is:yo =b1+b2 x o (4.4)4.24第24页,共69页。Inference in the Simple Regression ModelChapter 55.1第25页,共69页。1.yt =b1+b2x t +e t2.E(e t)=0 E(yt)=b1+b2x t 3.var(e t)=s 2 =var(yt)4.c
21、ov(e i,e j)=cov(yi,yj)=05.x t c for every observation6.e tN(0,s 2)ytN(b1+b2x t,s 2)Assumptions of the Simple Linear Regression Model5.2第26页,共69页。Probability Distribution of Least Squares Estimators b1 N b1,n S(x t-x)2s s2 Sx t2b2 N b2,S(x t-x)s s225.3第27页,共69页。s 2=n-2et2 2SUnbiased estimator of the
22、error variance:s 2s 2(n-2)n-2cTransform to a chi-square distribution:Error Variance Estimation 5.4第28页,共69页。We make a correct decision if:The null hypothesis is false and we decide to reject it.The null hypothesis is true and we decide not to reject it.Our decision is incorrect if:The null hypothesi
23、s is true and we decide to reject it.This is a type I error.The null hypothesis is false and we decide not to reject it.This is a type II error.5.5第29页,共69页。b2 N b2,S(x t-x)s s22Create a standardized normal random variable,Z,by subtracting the mean of b2 and dividing by its standard deviation:b2-b2
24、var(b2)Z =N(0,1)5.6第30页,共69页。Simple Linear Regressionyt =b1+b2x t +e t where E e t=0yt N(b1+b2x t,s 2)since Eyt=b1+b2x t e t =yt -b1-b2x t Therefore,e t N(0,s 2).5.7第31页,共69页。Create a Chi-Squaree t N(0,s 2)but want N(0,1).(e t/s)N(0,1)Standard Normal.(e t/s)2 c2(1)Chi-Square.5.8第32页,共69页。Sum of Chi-
25、SquaresSt=1(e t/s)2=(e1/s)2+(e 2/s)2+.+(e n/s)2 c2(1)+c2(1)+.+c2(1)=c2(N)Therefore,St=1(e t/s)2 c2(N)5.9第33页,共69页。Since the errors e t =yt -b1-b2x t are not observable,we estimate them with the sample residuals e t =yt -b1-b2x t.Unlike the errors,the sample residuals arenot independent since they us
展开阅读全文