计量经济学第二章简单线性回归模型课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《计量经济学第二章简单线性回归模型课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 第二 简单 线性 回归 模型 课件
- 资源描述:
-
1、 计量经济学第 二 章简单线性回归模型简单线性回归模型2 从从2004中国国际旅游交易会上获悉,到中国国际旅游交易会上获悉,到2020年,中国旅年,中国旅游业总收入将超过游业总收入将超过3000亿美元,相当于国内生产总值的亿美元,相当于国内生产总值的8%至至11%。(资料来源:国际金融报。(资料来源:国际金融报2004年年11月月25日日第二版)第二版)是什么决定性的因素能使中国旅游业总收入到是什么决定性的因素能使中国旅游业总收入到2020年达到年达到3000亿美元?亿美元?旅游业的发展与这种决定性因素的数量关系究竟是什么?旅游业的发展与这种决定性因素的数量关系究竟是什么?怎样具体测定旅游业发
2、展与这种决定性因素的数量关系怎样具体测定旅游业发展与这种决定性因素的数量关系?引子引子:中国旅游业总收入将超过中国旅游业总收入将超过30003000亿美元吗?亿美元吗?3第二章第二章 简单线性回归模型简单线性回归模型 本章主要讨论本章主要讨论:回归分析与回归函数回归分析与回归函数 简单线性回归模型参数的估计简单线性回归模型参数的估计 拟合优度的度量拟合优度的度量 回归系数的区间估计和假设检验回归系数的区间估计和假设检验 回归模型预测回归模型预测4第一节 回归分析与回归方程 本节基本内容本节基本内容:回归与相关回归与相关 总体回归函数总体回归函数 随机扰动项随机扰动项 样本回归函数样本回归函数
3、5 1.经济变量间的相互关系经济变量间的相互关系 确定性的函数关系确定性的函数关系 不确定性的统计关系不确定性的统计关系相关关系相关关系 (为随机变量为随机变量)没有关系没有关系 一、回归与相关一、回归与相关 (对统计学的回顾)(对统计学的回顾)()Yf X()Yf X62.2.相关关系相关关系 相关关系的描述相关关系的描述 相关关系最直观的描述方式相关关系最直观的描述方式坐标图坐标图(散布图)散布图)YX7相关关系的类型相关关系的类型 从涉及的变量数量看从涉及的变量数量看 简单相关简单相关 多重相关(复相关)多重相关(复相关)从变量相关关系的表现形式看从变量相关关系的表现形式看 线性相关线性
4、相关散布图接近一条直线散布图接近一条直线 非线性相关非线性相关散布图接近一条曲线散布图接近一条曲线 从变量相关关系变化的方向看从变量相关关系变化的方向看 正相关正相关变量同方向变化,同增同减变量同方向变化,同增同减 负相关负相关变量反方向变化,一增一减变量反方向变化,一增一减 不相关不相关8 3.3.相关程度的度量相关程度的度量相关系数相关系数 总体线性相关系数总体线性相关系数:其中:其中:X 的方差;的方差;Y的方差的方差 X和和Y的协方差的协方差样本线性相关系数样本线性相关系数:其中:其中:和和 分别是变量分别是变量 和和 的样本观测值的样本观测值 和和 分别是变量分别是变量 和和 样本值
5、的平均值样本值的平均值Cov(,)Var()Var()X YXYVar()XVar()YCov(,)X Y_22()()()()iiXYiiXX YYXXYY_YiXiYXXYXY9 和和 都是相互对称的随机变量都是相互对称的随机变量 线性线性相关系数只反映变量间的线性相关程度,不相关系数只反映变量间的线性相关程度,不 能说明非能说明非 线性相关关系线性相关关系 样本相关系数是总体相关系数的样本估计值,由样本相关系数是总体相关系数的样本估计值,由 于抽样波动,样本相关系数是个随机变量,其统于抽样波动,样本相关系数是个随机变量,其统 计显著性有待检验计显著性有待检验 相关系数只能反映线性相关程度
6、,不能确定因果相关系数只能反映线性相关程度,不能确定因果 关系,不能说明相关关系具体接近哪条直线关系,不能说明相关关系具体接近哪条直线 计量经济学关心:计量经济学关心:变量间的因果关系及隐藏在随变量间的因果关系及隐藏在随机性后面的统计规律性,这有赖于回归分析方法机性后面的统计规律性,这有赖于回归分析方法 使用相关系数时应注意使用相关系数时应注意XY104.4.回归分析回归分析回归的回归的古典意义古典意义:高尔顿遗传学的回归概念高尔顿遗传学的回归概念 (父母身高与子女身高的关系父母身高与子女身高的关系)回归的回归的现代意义现代意义:一个应变量对若干解释变量一个应变量对若干解释变量 依存关系依存关
7、系 的研究的研究回归的回归的目的(实质)目的(实质):由固定的解释变量去由固定的解释变量去 估计应变量的平均值估计应变量的平均值11 的的条件分布条件分布 当解释变量当解释变量 取某固定值时(条件),取某固定值时(条件),的值不的值不确定,确定,的不同取值形成一定的分布,即的不同取值形成一定的分布,即 的条的条件分布。件分布。的的条件期望条件期望 对于对于 的每一个取值,的每一个取值,对对 所形成的分布确所形成的分布确 定其期望或均值,称定其期望或均值,称 为为 的条件期望或条的条件期望或条 件均值件均值 注意几个概念注意几个概念iXXYYYYYYYXYXE()iY X12 iXYX回归线回归
8、线:对于每一个对于每一个 的取值,的取值,都有都有 的条件期望的条件期望 与之对应,与之对应,代表这些代表这些 的条件期的条件期 望的点的轨迹所形成望的点的轨迹所形成 的直线或曲线,称为的直线或曲线,称为 回归线。回归线。回归线与回归函数回归线与回归函数XYYE()iY X13 回归函数:回归函数:应变量应变量 的条件期望的条件期望 随解随解释变量释变量 的的变化而有规律的变化,如果把的的变化而有规律的变化,如果把 的条件期望的条件期望 表现为表现为 的某种函数的某种函数 这个函数称为回归函数。这个函数称为回归函数。回归函数分为:回归函数分为:总体回归函数和样本回归函数总体回归函数和样本回归函
9、数举例:假如已知举例:假如已知100个家庭构成的总体。个家庭构成的总体。回归线与回归函数回归线与回归函数YXXE()()iiYXfXYE()iY XE()iY X14每每月月家家庭庭消消费费支支出出Y每每 月月 家家 庭庭 可可 支支 配配 收收 入入 X X10008208889329609001500962102411211210125913241150200011081201126413101340140014481489153816001702140025001329136514101432152016151650171217781841188619002012165030001632
10、172617861835188519432037207821792298231623872498258919003500184218741906106820662185221022892313239824232453248725862150400020372110222523192321236523982487251325382567261027102400450022752388242624882587265027892853293431102650500024642589279028562900302130643142327429005500282430383150320132883399
11、 3150E()iY X例例:100个家庭构成的总体个家庭构成的总体 (单位单位:元元)15 1.1.总体回归函数的概念总体回归函数的概念 前提:前提:假如已知所研究的经济现象的总体应变假如已知所研究的经济现象的总体应变量量 和解释变量和解释变量 的每个观测值的每个观测值,可以计算出总体可以计算出总体应变量应变量 的条件均值的条件均值 ,并将其表现为解释并将其表现为解释变量变量 的某种函数的某种函数 这个函数称为总体回归函数(这个函数称为总体回归函数(PRF)二、总体回归函数二、总体回归函数(PRFPRF)E()()iiY X=f XYYXXE()iY X16 iuiXXY)(iXYEiY (
12、1)条件均值条件均值表现形式表现形式 假如假如 的条件均值的条件均值 是解是解 释变量释变量 的线性函数,可表示为:的线性函数,可表示为:(2)个别值个别值表现形式表现形式 对于一定的对于一定的 ,的各个别值的各个别值 分布分布 在在 的周围,若令各个的周围,若令各个 与条件与条件 均值均值 的偏差为的偏差为 ,显然显然 是随机变量是随机变量,则有则有 或或 2.2.总体回归函数的表现形式总体回归函数的表现形式iXE()iY X12E()()iiiiY Xf XXiYE()iY XiYE()iY Xiuiu12E()iiiiiiuYY XYX12iiiYXuYYX17实际的经济研究中总体回归函
13、数通常是实际的经济研究中总体回归函数通常是未知未知的,的,只能根据经济理论和实践经验去只能根据经济理论和实践经验去设定设定。“计量计量”的目的就是寻求的目的就是寻求PRFPRF。总体回归函数中总体回归函数中 与与 的关系可是的关系可是线性线性的,也可是的,也可是非线性非线性的。的。对线性回归模型的对线性回归模型的“线性线性”有两种解释有两种解释 就变量而言就变量而言是线性的是线性的 的条件均值是的条件均值是 的线性函数的线性函数 就参数而言就参数而言是线性的是线性的 的条件均值是参数的条件均值是参数 的线性函数的线性函数 3.3.如何理解总体回归函数如何理解总体回归函数YXYYX18计量经济学
14、中计量经济学中:线性回归模型主要指就参数而言是线性回归模型主要指就参数而言是“线性线性”,因为只要对参数而言是线性的因为只要对参数而言是线性的,都可以用类似的方法都可以用类似的方法估计其参数。估计其参数。12E()iiiY XX212E()iiiY XX12E()iiiY XX“线性线性”的判断的判断19三、随机扰动项三、随机扰动项概念概念:各个各个 值与条件均值值与条件均值 的偏差的偏差 代表代表 排除在模型以外的所有排除在模型以外的所有 因素对因素对 的影响。的影响。性质:性质:是期望为是期望为0有一定分布的随机变量有一定分布的随机变量 重要性:重要性:随机扰动项的性质决定着计量经济方随机
15、扰动项的性质决定着计量经济方法的选择法的选择uiYiuYXiXuE()iY XYiu20 未知未知影响因素的代表影响因素的代表 无法取得数据无法取得数据的已知影响因素的代表的已知影响因素的代表 众多细小影响因素众多细小影响因素的综合代表的综合代表 模型的模型的设定误差设定误差 变量的变量的观测误差观测误差 变量内在变量内在随机性随机性引入随机扰动项的原因引入随机扰动项的原因21四、样本回归函数四、样本回归函数(SRFSRF)样本回归线样本回归线:对于对于 的一定值,取得的一定值,取得 的样本观测值,可计算其条的样本观测值,可计算其条件均值,样本观测值条件均值的轨迹称为样本回归线。件均值,样本观
16、测值条件均值的轨迹称为样本回归线。样本回归函数:样本回归函数:如果把应变量如果把应变量 的样本条件均值表示为解释变量的样本条件均值表示为解释变量 的某的某种函数,这个函数称为样本回归函数(种函数,这个函数称为样本回归函数(SRF)。)。XYYYX22SRF 的特点的特点每次抽样都能获得一个样本,就可以拟合一条每次抽样都能获得一个样本,就可以拟合一条样本回样本回 归线,所以样本回归线随抽样波动而变归线,所以样本回归线随抽样波动而变化,可以有许多条化,可以有许多条(SRF不唯一)。不唯一)。SRF2SRF1YX23样本回归函数的函数形式应与设定的总体回归样本回归函数的函数形式应与设定的总体回归函数
17、的函数形式一致。函数的函数形式一致。样本回归线还不是总体回归线,至多只是未知样本回归线还不是总体回归线,至多只是未知总体回归线的近似表现。总体回归线的近似表现。2412iiYX 样本回归函数如果为线性函数,可表示为样本回归函数如果为线性函数,可表示为 其中:其中:是与是与 相对应的相对应的 的样本条件均值的样本条件均值 和和 分别是样本回归函数的参数分别是样本回归函数的参数 应变量应变量 的实际观测值的实际观测值 不完全等于样本条件不完全等于样本条件均值,二者之差用均值,二者之差用 表示表示,称为称为剩余项剩余项或或残差项残差项:或者或者 样本回归函数的表现形式样本回归函数的表现形式21iii
18、YXeiiieYYieiXiYiY12ieYY25 对样本回归的理解对样本回归的理解 如果能够获得如果能够获得 和和 的数值,显然的数值,显然:和和 是对总体回归函数参数是对总体回归函数参数 和和 的估计的估计 是对总体条件期望是对总体条件期望 的估计的估计 在概念上类似总体回归函数中的在概念上类似总体回归函数中的 ,可,可 视为对视为对 的估计。的估计。ieiYiuE()iY X12iiiYXe122112iu26iY 样本回归函数与总体回归函数的关系 SRF PRF A iuieiY()iiE Y XiYYiXX271 回归分析的目的回归分析的目的 用样本回归函数用样本回归函数SRF去估计
19、总体回归函数去估计总体回归函数PRF。由于样本对总体总是存在代表性误差,由于样本对总体总是存在代表性误差,SRF 总会过总会过 高或过低估计高或过低估计PRF。要解决的问题:要解决的问题:寻求一种规则和方法,使得到的寻求一种规则和方法,使得到的SRF的参数的参数 和和 尽可能尽可能“接近接近”总体回归函数中的参数总体回归函数中的参数 和和 。这样的这样的“规则和方法规则和方法”有多种,最常用的是最小二有多种,最常用的是最小二乘法乘法21228 第二节第二节 简单线性回归模型的最小二乘估计简单线性回归模型的最小二乘估计 本节基本内容本节基本内容:简单线性回归的基本假定简单线性回归的基本假定 普通
20、最小二乘法普通最小二乘法 OLSOLS回归线的性质回归线的性质 参数估计式的统计性质参数估计式的统计性质29 一、简单线性回归的基本假定一、简单线性回归的基本假定 1.为什么要作基本假定?为什么要作基本假定?模型中有随机扰动,估计的参数是随机变量,模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定只有对随机扰动的分布作出假定,才能确定 所估计参数的分布性质,也才可能进行假设所估计参数的分布性质,也才可能进行假设 检验和区间估计检验和区间估计 只有具备一定的假定条件,所作出的估计才只有具备一定的假定条件,所作出的估计才 具有较好的统计性质。具有较好的统计性质。30 (
21、1 1)对模型和变量的假定对模型和变量的假定如如假定解释变量假定解释变量 是非随机的,或者虽然是随机的,但与扰动是非随机的,或者虽然是随机的,但与扰动项项 是不相关的是不相关的假定解释变量假定解释变量 在重复抽样中为固定值在重复抽样中为固定值假定变量和模型无设定误差假定变量和模型无设定误差2、基本假定的内容、基本假定的内容12iiiYXuXuX31又称高斯假定、古典假定又称高斯假定、古典假定假定假定1 1:零均值假定零均值假定 在给定在给定 的条件下的条件下,的条件期望为零的条件期望为零假定假定2 2:同方差假定同方差假定 在给定在给定 的条件下,的条件下,的条件方差为某个常数的条件方差为某个
22、常数iuiu(2)对随机扰动项)对随机扰动项 的假定的假定uiuXXE()0iiu X2iu22Var()EE()iiiiiu Xuu X32 假定假定3 3:无自相关假定无自相关假定 随机扰动项随机扰动项 的逐次值互不相关的逐次值互不相关 假定假定4 4:随机扰动随机扰动 与解释变量与解释变量 不相关不相关 iuiuX(,)()()ijiijjCov u uE uE uuE u()0()ijE uuij(,)()()0iiiiiiCov u XE uE uXE X33 假定假定5 5:对随机扰动项分布的正态性假定对随机扰动项分布的正态性假定 即假定即假定 服从均值为零、方差为服从均值为零、方
23、差为 的正态分布的正态分布 (说明:正态性假定不影响对参数的点估计,但对(说明:正态性假定不影响对参数的点估计,但对确定所估计参数的分布性质是需要的。且根据中心确定所估计参数的分布性质是需要的。且根据中心极限定理,当样本容量趋于无穷大时,极限定理,当样本容量趋于无穷大时,的分布会的分布会趋近于正态分布。所以正态性假定是合理的)趋近于正态分布。所以正态性假定是合理的)iu2(0,)iuNiu2iu34的分布性质的分布性质 由于由于 的分布性质决定了的分布性质决定了 的分布性质。的分布性质。对对 的一些假定可以等价地表示为对的一些假定可以等价地表示为对 的假定:的假定:假定假定1:零均值假定:零均
24、值假定 假定假定2:同方差假定:同方差假定 假定假定3:无自相关假定:无自相关假定 假定假定5:正态性假定:正态性假定iYCov(,)0()ijY YijiiiuXY21iuiuiY12E()iiiY XX2Var()iY X212(,)iiYNXY35OLS的基本思想的基本思想二、普通最小二乘法二、普通最小二乘法 (rdinary Least Squares)12iYiYiYieie2ie2212min()min()iiieYX36 正规方程和估计式正规方程和估计式用克莱姆法则求解得观测值形式的用克莱姆法则求解得观测值形式的OLS估计式:估计式:2122()iiiiiiiXYXX YnXX取
25、偏导数为取偏导数为0,得正规方程,得正规方程222()iiiiiinX YXYnXX12iiYnX212iiiiX YXX37 为表达得更简洁,或者用离差形式为表达得更简洁,或者用离差形式OLS估计式估计式:注意注意其中:其中:而且样本回归函数可写为而且样本回归函数可写为 22_2)()(iiiiiixyxXXYYXXXY2_1XXxiiYYyii用离差表现的用离差表现的OLSOLS估计式估计式iiixy 38三、OLSOLS回归线的性质回归线的性质可以证明可以证明:回归线通过样本均值回归线通过样本均值估计值估计值 的均值等于实的均值等于实 际观测值际观测值 的均值的均值 XYXYiYiY12
展开阅读全文