固液界面课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《固液界面课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 界面 课件
- 资源描述:
-
1、2022-8-17第六章 固液界面1第六章 固液界面2022-8-17第六章 固液界面2 固液界面的产生:暴露在空气中的固体会吸附气体,此时再与液体接触,若所吸附 的气体被排开,则此时产生固液界面 润湿(wetting)现象:水在清洁玻璃表面上铺展开润湿 叶片上的水珠,玻璃上的水银不润湿 润湿作用:用液体取代空气,将固气表面接触代之以固液接触的过程。液体在什么条件下可润湿固体?怎样改变液体和固体的润湿性质满足人们的需要?第六章 固液界面6.1润湿过程 润湿过程可分为三类:粘湿(粘附润湿adhesion),浸湿(immersion),铺展(spreading)2022-8-17第六章 固液界面3
2、6.1.1粘湿第六章 固液界面概念:变液气界面和固气界面为固 液界面的过程 能量:-G=Wa=sg+lgsl,Wa为粘附功 恒温条件下,Wa0(或G0)是发生粘 湿的条件。Wa越大,体系越稳定,固液界面结合得越牢。任何使sl减小的作用因素都可增大发生粘湿 的倾向并增加粘附的牢度。2022-8-17第六章 固液界面46.1.2 浸湿概念:固体浸入液体,固气表面为固 液界面所代替的过程。能量:-G=Wi=sg-sl Wi为浸润功。其大小可以反映液体在固体表 面上取代气体的能力第六章 固液界面6.1.3 铺展 能量:-G=S=sg-sl-lg S:铺展系数恒温恒压条件下,S0时,液体可以在固体 表面
3、上自动展开。由于浸润功 Wi=sg-sl所 以 S=Wi-lg要 S 0,则必须要浸润功 Wi lg2022-8-17第六章 固液界面56.1.4 润湿过程的比较 粘湿 Wa=sg-sl+lg0 浸湿 Wi=sg-sl 0 铺展 S=sg-sl-lg0 对一个体系而言:Wa(粘附功)Wi(粘附张力或浸润功)S(铺展系数)若S0,则Wi和Wa必大于0,即凡能铺展的必定能浸润与粘湿,但能浸润与粘湿的不一定能铺展。通常用S作为系统润湿程度的指标。上列三个过程都涉及粘附张力(浸润功)Wi=A=sg-sl 显然sg越大,sl越小,差值越大,越有利于润湿 lg对三种润湿贡献不同:对粘湿,lg大有利 对浸湿
4、,lg不起作用 对铺展,lg小有利第六章 固液界面2022-8-17第六章 固液界面66.2 Young方程和润湿接触角6.2.1 Young方程和润湿接触角 将液体滴于固体表面上,液体或铺展而覆盖固体表面,或形成一液滴停于其上。当液滴滴到固体表面上时,所形成的形状用接触角来描述。第六章 固液界面2022-8-17第六章 固液界面7接触角:在固液气三相交界线上任意点O的液体的表面张力lg 与液固 界面张力sl间的夹角。平衡时三相点处各界面张力sg lg sl一般服从 或 其中lg sl力图使液滴收缩,sg力图使液滴展开 以上两式称为Young方程(1805)或润湿方程,是研究s-l润湿的基础
5、lgcosslsgcoslgslsg第六章 固液界面2022-8-17第六章 固液界面8 6.2.2 润湿性好坏的判据 =0 铺展(完全湿润)(cos=1;sg=lg+sl),=180 完全不湿润,液体在固体表面凝集成小球 0 90 润湿,且越小,润湿性越好 90 金属 盐类 塑料 荷叶 等 表面能 降低 润湿性 减小 固体的表面能越高,越容易发生润湿作用。西斯曼(zisman)把固体分为两大类:凡表面能高于100mN/m(mJ/m2)的固体叫高表面能固体,其表面 也叫高能表面。凡表面能低于100mN/m(mJ/m2)的固体叫低表面能固体,其表面 也叫低能表面。有机固体大都属低表面能固体,表面
6、能与一般液体相仿,甚至更 低;无机固体大都属高表面能固体,常见的金属及其氧化物,卤化 物及各种无机盐的表面能级在5005000的范围。第六章 固液界面2022-8-17第六章 固液界面206.4.1 低能表面的润湿性质 同系列液体对同一低能表面的接触角,随液体表面张力降低而减小,即cos随减小而增大。第六章 固液界面2022-8-17第六章 固液界面21 将直线外延到cos=1处,相应的液体表面张力值指示此液体系列中表面张力大于此值者皆不能在此固体上自行铺展,只有同系物中表面张力小于此值的液体方可在该固体上自动铺展。当cos1时的lg即为该固体的临界表面张力c。临界表面张力的物理意义:表面张力
7、小于某固体c的液体才能在该固体上铺展。第六章 固液界面2022-8-17第六章 固液界面22第六章 固液界面2022-8-17第六章 固液界面236.4.2 高能表面上的自憎现象 一些低表面张力液体,在金属、氧化物等高能表面上不能自动铺展,而形成具有相当大接触角的液滴现象。原因:两亲分子以亲水基固定于高能固体表面,形成疏水基向外的单分子层吸附膜。第六章 固液界面2022-8-17第六章 固液界面246.5 润湿的应用第六章 固液界面2022-8-17第六章 固液界面25第六章 固液界面2022-8-17第六章 固液界面26第六章 固液界面2022-8-17第六章 固液界面27第六章 固液界面2
8、022-8-17第六章 固液界面286.6 固液界面的吸附作用6.6.1 固液界面吸附的特点 吸附情况复杂 由于溶液成分多,吸附剂可吸附溶质,也可吸附溶剂,同时还涉及溶质、溶剂和吸附 剂三者间的相互作用。固气表面吸附:空白表面被吸附分子 固液界面吸附:被吸附溶质被吸附溶剂第六章 固液界面测定吸附量的实验方法简单浸泡法:将一定量的吸附剂与一定量已知浓度的溶液相混,在一定温度 下待吸附平衡后再测定溶液的浓度。根据吸附前后溶液浓度的 变化,可算出单位质量固体吸附剂吸附溶质的量。m:吸附剂的质量,x:被吸附物质的数量 (mol或g),V:溶液体积,C1:溶液吸附 前的浓度,C2:吸附平衡时溶液的浓度。
9、循环法:在密闭系统中使溶液循环通过吸附剂达到平衡。色谱法:以吸附剂为固定相测定流入和流出溶液浓度的方法。溶液浓度变化的测定方法:各种分析化学和物理化学手段。mccVmx)(212022-8-17第六章 固液界面296.6.2 固体自稀溶液中的吸附吸附平衡:被吸附溶剂溶液中溶质 被吸附溶质溶液中溶剂吸附等温线:Giles研究和总结了稀溶液吸附等温线将其分为4类18种(图42),分类的主要依据是等温线起始段的斜率和随后的变化。这四类等温线分别称为S、L、H形和C形等温线。第六章 固液界面2022-8-17第六章 固液界面30S形等温线:特点:等温线起始段斜率小,凸向浓度轴,表明溶剂有强烈 的竞争吸
10、附作用。随平衡浓度增加,吸附量有较快上升的阶 段,这是由于被吸附的分子与体相溶液中溶质分子的作用或 因少量溶质分子吸附引起固体表面性质的变化。L形等温线 特点:等温线起始段斜率大,凸向纵轴,表明溶质比溶剂更 易吸附,在中等平衡浓度吸附量常有一趋于定值的区域。H形等温线 表示的是溶质在吸附剂上有强烈亲和作用的吸附,如化学吸 附、离子交换和大分子的吸附。C形等温线 的起始段为直线,表明溶质在吸附相和体相溶液间恒定分配。这类等温线少见。随着平衡浓度增加,各类型等温线形状变化多样,大多可用多层吸附的发生、溶质活度的变化、吸附剂孔效应等作定性解释。第六章 固液界面2022-8-17第六章 固液界面311
11、.Langmuir等温式 设吸附层是由溶质和溶剂分子组成的二维理想溶液,溶质和溶剂分子 吸附在固体表面上所占面积大小一样。覆盖率(溶质)的表达式:溶质的吸附量,:1 1 的吸附量,n2r:溶质 被吸附的量,nr:溶质与溶剂的吸附量之和(mol),a2L:溶质在液相中的活度 b:常数(均匀表面)llbabann2221 第六章 固液界面将上式变形:对稀溶液:a2l=C2(溶液的浓度)以 对C2作图,可求得和 b 当用mol/g表示时,与吸附剂比表面积S的关系 am:每个分子的截面积llaba221221cbcmaNS02c2022-8-17第六章 固液界面322.Freundlich等温式 对不
12、均匀表面,b不是常数,在此情况下,所得等温线为指数型等温线 k.n均为经验常数,其值与温度,吸附剂和溶质的本性有关3.多层吸附的BET二常数公式经验式 有限溶解物质的吸附在平衡浓度接近其饱和溶液浓度时吸附量常急剧上升,等温线如气体吸附的型等温线,有多层吸附的特征。将BET二常数公式中的p/p。换为cc0(c0为有限溶解物质饱和溶液浓度)常可描述这类等温线。按此式处理得到的二常数都只有经验意义。nkc122lg1lglgcnk 第六章 固液界面2022-8-17第六章 固液界面336.6.3 影响自稀溶液吸附的因素 吸附剂、溶质和溶剂的极性及其他性质对吸附量的影响1同系物的吸附-Traube规则
13、 大量的实验结果证明,同系有机物在水溶液中被极性小的吸附剂吸附时,“吸附量随着碳链增长而有规律地增加”。Traube规则 水溶液中吸附量的顺序为:丁酸丙酸乙酸甲酸 吸附能力大,表明它在固/液界面上降低界面能多,从Langmuir公式看,与吸附热有关的吸附系数b必然是丁酸最大,甲酸最小。原因:因为炭是非极性吸附剂,而“非极性吸附剂总是易自极性溶剂中优先吸附极性小的组分”。第六章 固液界面2022-8-17第六章 固液界面34反Traube规则:“极性吸附剂总是易自非极性溶剂中优先吸附极性大的组分”硅胶为极性吸附剂。硅胶自甲苯中吸附脂肪酸吸附量的顺厅为:乙酸丙酸丁酸辛酸.关于有机同系物在两种典型吸
14、附剂活性炭和硅胶上的吸附行为,A.W.Adamson等曾作了一系列的研究。他们指出,自溶液中吸附时,影响Traube规则的因素很多,已经证明,同系物的吸附次序可因吸附剂性质,吸附剂活化条件、溶液浓度或溶剂的不同而完全相反。因此根据体系的性质预示吸附规律时,必须十分小心。第六章 固液界面2022-8-17第六章 固液界面352.影响因素吸附剂的性质 表面状态:各种固体都有自身的表面特性,同类吸附剂由于制备条件 不同表面状态也不同。比表面积:比表面积大,活性大(可供进行吸附的位置多)。孔 结 构:孔大,扩散速度快,平衡吸附量小;孔小,扩散速度慢,平衡吸附量大。温度的影响:原则上讲,温度升高对吸附不
15、利.(吸附是放热过程)例外:溶解度随温度上升而降低的物质(非离子表面活性剂)多孔吸附:吸附速度很慢时,T增大,有利于扩散。PH值的影响:PH值不同将影响吸附剂表面带电符号的变化.第六章 固液界面2022-8-17第六章 固液界面36界面张力的影响 表面张力越低的物质越易在界面上吸附。李培森等用硅胶对苯甲苯、苯氯苯、甲苯氯苯、甲苯溴苯及氯苯溴苯5个理想二元溶液在全组成范围内的吸附进行了研究。硅胶表面具有类似于水的性质。因此可以设想,越易溶于水中的物质,将越易为硅胶所吸附。即:可以用物质在水中的溶度大小来衡量其在硅胶表面上吸附的多少。而溶解度与液液界面张力有密切关系。一般:有机液体与水的界面张力越
展开阅读全文