03解答题知识点分类-江苏省苏州市五年(2018-2022)中考数学真题分类汇编(含答案).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《03解答题知识点分类-江苏省苏州市五年(2018-2022)中考数学真题分类汇编(含答案).docx》由用户(alice)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 03 解答 知识点 分类 江苏省 苏州市 2018 2022 中考 数学 汇编 答案 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、03解答题知识点分类-江苏省苏州市五年(2018-2022)中考数学真题分类汇编一实数的运算(共4小题)1(2021苏州)计算:+|2|322(2020苏州)计算:+(2)2(3)03(2019苏州)计算:()2+|2|(2)04(2018苏州)计算:|+()2二代数式求值(共1小题)5(2022苏州)已知3x22x30,求(x1)2+x(x+)的值三分式的化简求值(共2小题)6(2021苏州)先化简,再求值:(1+),其中x17(2019苏州)先化简,再求值:(1),其中,x3四零指数幂(共1小题)8(2022苏州)计算:|3|+22(1)0五解二元一次方程组(共1小题)9(2021苏州)解
2、方程组:六解分式方程(共2小题)10(2022苏州)解方程:+111(2020苏州)解方程:+1七一元一次不等式的应用(共1小题)12(2018苏州)某学校准备购买若干台A型电脑和B型打印机如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?八解一元一次不等式组(共2小题)13(2019苏州)解不等式组:14(2
3、018苏州)解不等式组:九一元一次不等式组的应用(共1小题)15(2020苏州)如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m)(1)当a20时,求b的值;(2)受场地条件的限制,a的取值范围为18a26,求b的取值范围一十一次函数的应用(共3小题)16(2022苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动第三次
4、购进甲、乙两种水果共200千克,且投入的资金不超过3360元将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值17(2021苏州)如图,甲、乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形如图,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF2EH(1)求容器甲、乙的容积分别为多少立方米?(2)现在我们分别向容器甲、乙同时持续注水(注水前
5、两个容器是空的),一开始注水流量均为25立方米/小时,4小时后,把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h乙h甲h,已知h(米)关于注水时间t(小时)的函数图象如图所示,其中MN平行于横轴,根据图中所给信息,解决下列问题:求a的值;求图中线段PN所在直线的解析式18(2020苏州)某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(
6、kg)之间函数关系的图象如图中折线所示请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变)6月9日从6月1日至今,一共售出200kg6月10、11日这两天以成本价促销,之后售价恢复到10元/kg6月12日补充进货200kg,成本价8.5元/kg6月30日800kg水果全部售完,一共获利1200元一十一一次函数综合题(共1小题)19(2018苏州)如图,直线l表示一条东西走向的笔
7、直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处设AEx米(其中x0),GAy米,已知y与x之间的函数关系如图所示,(1)求图中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由一十二反比例函数图象上点的坐标特征(共2小题)20(2021苏州)如图,在平面直角坐标系中,四边形OABC为矩形,
8、点C,A分别在x轴和y轴的正半轴上,点D为AB的中点已知实数k0,一次函数y3x+k的图象经过点C、D,反比例函数y(x0)的图象经过点B,求k的值21(2019苏州)如图,A为反比例函数y(其中x0)图象上的一点,在x轴正半轴上有一点B,OB4连接OA,AB,且OAAB2(1)求k的值;(2)过点B作BCOB,交反比例函数y(其中x0)的图象于点C,连接OC交AB于点D,求的值一十三反比例函数与一次函数的交点问题(共1小题)22(2022苏州)如图,一次函数ykx+2(k0)的图象与反比例函数y(m0,x0)的图象交于点A(2,n),与y轴交于点B,与x轴交于点C(4,0)(1)求k与m的值
9、;(2)P(a,0)为x轴上的一动点,当APB的面积为时,求a的值一十四抛物线与x轴的交点(共2小题)23(2020苏州)如图,二次函数yx2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,3)(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形过点P、Q分别作x轴的垂线,与抛物线交于点P(x1,y1)、Q(x2,y2)若|y1y2|2,求x1、x2的值24(2018苏州)如图,已知抛物线yx24与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线yx+m经过点A,与y轴交于
10、点D(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,求新抛物线对应的函数表达式一十五二次函数综合题(共3小题)25(2022苏州)如图,二次函数yx2+2mx+2m+1(m是常数,且m0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D其对称轴与线段BC交于点E,与x轴交于点F连接AC,BD(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求OBC的度数;(2)若ACOCBD,求m的值;(3)若在第四象限内二次函数yx2+2mx+2m+1(m是常数,且m
11、0)的图象上,始终存在一点P,使得ACP75,请结合函数的图象,直接写出m的取值范围26(2021苏州)如图,二次函数yx2(m+1)x+m(m是实数,且1m0)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C已知点D位于第一象限,且在对称轴上,ODBD,点E在x轴的正半轴上,OCEC,连接ED并延长交y轴于点F,连接AF(1)求A、B、C三点的坐标(用数字或含m的式子表示);(2)已知点Q在抛物线的对称轴上,当AFQ的周长的最小值等于时,求m的值27(2019苏州)如图,抛物线yx2+(a+1)xa与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C已知ABC的面
12、积是6(1)求a的值;(2)求ABC外接圆圆心的坐标;(3)如图,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,QPB的面积为2d,且PAQAQB,求点Q的坐标一十六全等三角形的判定与性质(共2小题)28(2020苏州)问题1:如图,在四边形ABCD中,BC90,P是BC上一点,PAPD,APD90求证:AB+CDBC问题2:如图,在四边形ABCD中,BC45,P是BC上一点,PAPD,APD90求的值29(2018苏州)如图,点A,F,C,D在一条直线上,ABDE,ABDE,AFDC求证:BCEF一十七三角形综合
13、题(共1小题)30(2022苏州)(1)如图1,在ABC中,ACB2B,CD平分ACB,交AB于点D,DEAC,交BC于点E若DE1,BD,求BC的长;试探究是否为定值如果是,请求出这个定值;如果不是,请说明理由(2)如图2,CBG和BCF是ABC的2个外角,BCF2CBG,CD平分BCF,交AB的延长线于点D,DEAC,交CB的延长线于点E记ACD的面积为S1,CDE的面积为S2,BDE的面积为S3若S1S3S22,求cosCBD的值一十八矩形的性质(共1小题)31(2022苏州)如图,将矩形ABCD沿对角线AC折叠,点B的对应点为点E,AE与CD交于点F(1)求证:DAFECF;(2)若F
14、CE40,求CAB的度数一十九四边形综合题(共1小题)32(2019苏州)已知矩形ABCD中,AB5cm,点P为对角线AC上的一点,且AP2cm如图,动点M从点A出发,在矩形边上沿着ABC的方向匀速运动(不包含点C)设动点M的运动时间为t(s),APM的面积为S(cm2),S与t的函数关系如图所示(1)直接写出动点M的运动速度为 cm/s,BC的长度为 cm;(2)如图,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着DCB的方向匀速运动,设动点N的运动速度为v(cm/s)已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动
15、点M,N相遇后立即同时停止运动,记此时APM与DPN的面积分别为S1(cm2),S2(cm2)求动点N运动速度v(cm/s)的取值范围;试探究S1S2是否存在最大值,若存在,求出S1S2的最大值并确定运动时间x的值;若不存在,请说明理由二十圆内接四边形的性质(共1小题)33(2021苏州)如图,四边形ABCD内接于O,12,延长BC到点E,使得CEAB,连接ED(1)求证:BDED;(2)若AB4,BC6,ABC60,求tanDCB的值二十一切线的性质(共1小题)34(2018苏州)如图,AB是O的直径,点C在O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E延长DA交O于点F,连
16、接FC,FC与AB相交于点G,连接OC(1)求证:CDCE;(2)若AEGE,求证:CEO是等腰直角三角形二十二圆的综合题(共3小题)35(2022苏州)如图,AB是O的直径,AC是弦,D是的中点,CD与AB交于点EF是AB延长线上的一点,且CFEF(1)求证:CF为O的切线;(2)连接BD,取BD的中点G,连接AG若CF4,BF2,求AG的长36(2020苏州)如图,已知MON90,OT是MON的平分线,A是射线OM上一点,OA8cm动点P从点A出发,以1cm/s的速度沿AO水平向左做匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上做匀速运动连接PQ,交OT于点B经过
17、O、P、Q三点作圆,交OT于点C,连接PC、QC设运动时间为t(s),其中0t8(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由(3)求四边形OPCQ的面积37(2019苏州)如图,AB为O的直径,C为O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F(1)求证:DOAC;(2)求证:DEDADC2;(3)若tanCAD,求sinCDA的值二十三旋转的性质(共1小题)38(2019苏州)如图,ABC中,点E在BC边上,AEAB,将线段AC绕A点旋转到AF的位置,使得CAFBAE,连接EF,EF与AC交于点G(1)求证:EFB
18、C;(2)若ABC65,ACB28,求FGC的度数二十四相似三角形的判定与性质(共2小题)39(2020苏州)如图,在矩形ABCD中,E是BC的中点,DFAE,垂足为F(1)求证:ABEDFA;(2)若AB6,BC4,求DF的长40(2018苏州)问题1:如图,在ABC中,AB4,D是AB上一点(不与A,B重合),DEBC,交AC于点E,连接CD设ABC的面积为S,DEC的面积为S(1)当AD3时, ;(2)设ADm,请你用含字母m的代数式表示问题2:如图,在四边形ABCD中,AB4,ADBC,ADBC,E是AB上一点(不与A,B重合),EFBC,交CD于点F,连接CE设AEn,四边形ABCD
19、的面积为S,EFC的面积为S请你利用问题1的解法或结论,用含字母n的代数式表示二十五相似形综合题(共1小题)41(2021苏州)如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,它们相交于点P,点P1、P2分别在线段PF、PH上,PP1PG,PP2PE,连接P1H、P2F,P1H与P2F相交于点Q已知AG:GDAE:EB1:2,设AGa,AEb(1)四边形EBHP的面积 四边形GPFD的面积(填“”、“”或“”)(2)求证:P1FQP2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值二十六用样本估计总体(共1小题)42(2022苏州)某校九年级640名
20、学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如表表格:培训前成绩(分)678910划记正正正正人数(人)124754培训后成绩(分)678910划记一正正正正人数(人)413915(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m n;(填“”、“”或“”)(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?(3)估计该校九年级640名学生经过培训,测试成
21、绩为“10分”的学生增加了多少人?二十七条形统计图(共3小题)43(2021苏州)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为 名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“陶艺”课程的学生占 %;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?44(20
展开阅读全文
链接地址:https://www.163wenku.com/p-3286689.html