2022年中考数学真题综合练习:最值问题(含答案).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022年中考数学真题综合练习:最值问题(含答案).docx》由用户(alice)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年中 数学 综合 练习 问题 答案 下载 _中考真题_中考复习_数学_初中
- 资源描述:
-
1、2022年中考数学真题综合练习:最值问题1.(2022黔东南)在解决数学实际问题时,常常用到数形结合思想,比如:的几何意义是数轴上表示数的点与表示数的点的距离,的几何意义是数轴上表示数的点与表示数2的点的距离当取得最小值时,的取值范围是( )A. B. 或C. D. 2.(2022鄂州)如图,定直线MNPQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有BCQ=60点A是MN上方一定点,点D是PQ下方一定点,且AEBCDF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为( )A. 24B. 24C. 12D. 123.(2022齐齐
2、哈尔)如图,二次函数的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为,函数最大值为4,结合图象给出下列结论:;若关于x的一元二次方程 有两个不相等的实数根,则m4;当x4;当x0时,y随x的增大而减小其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个【答案】解:二次函数的对称轴为, 故正确;函数图象开口向下,对称轴为,函数最大值为4,函数的顶点坐标为(-1,4)当x=-1时, ,二次函数的图象与y轴的交点在(0,1)与(0,2)之间,24+a-1时,y随x的增大而减小,故错误所以,正确的结论是,共3个,故选:B4.(2022毕节)如图,在中,点P为边上任意一点,连接,以,为
3、邻边作平行四边形,连接,则长度的最小值为_【答案】解:,四边形APCQ是平行四边形,POQO,COAO,PQ最短也就是PO最短,过O作BC的垂线,,,则PQ的最小值为,故答案为:5.(2022铜仁)如图,在边长为2的正方形ABCD中,点E为AD的中点,将CDE沿CE翻折得CME,点M落在四边形ABCE内点N为线段CE上的动点,过点N作NP/EM交MC于点P,则MN+NP的最小值为_【答案解:作点P关于CE的对称点P, 由折叠的性质知CE是DCM的平分线,点P在CD上,过点M作MFCD于F,交CE于点G,MN+NP=MN+NPMF,MN+NP的最小值为MF的长, 连接DG,DM,由折叠的性质知C
4、E为线段 DM的垂直平分线,AD=CD=2,DE=1,CE=,CEDO=CDDE, DO=,EO=,MFCD,EDC=90,DEMF,EDO=GMO, CE为线段DM的垂直平分线,DO=OM,DOE=MOG=90,DOEMOG,DE=GM,四边形DEMG为平行四边形, MOG=90,四边形DEMG为菱形,EG=2OE=,GM= DE=1,CG=,DEMF,即DEGF,CFGCDE,即, FG=,MF=1+=,MN+NP的最小值为故答案为:6.(2022龙东地区)如图,菱形ABCD中,对角线AC,BD相交于点O,AH是的平分线,于点E,点P是直线AB上的一个动点,则的最小值是_【答案】解:如图,
5、作点O关于AB的对称点F,连接OF交AB于G,连接PE交直线AB于P,连接PO,则PO=PF,此时,PO+PE最小,最小值=EF,菱形ABCD,ACBD,OA=OC,O=OD,AD=AB=3,BAD=60,ABD是等边三角形,BD=AB=3,BAO=30,OB=,OA=,点O关于AB的对称点F,OFAB,OF=2OG=OA=,AOG=60,CEAH于E,OA=OC,OE=OC=OA=,AH平分BAC,CAE=15,AEC=CAE=15,DOE=AEC+CAE=30,DOE+AOG=30+60=90,FOE=90,由勾股定理,得EF=,PO+PE最小值=故答案为:7.(2022遵义)如图,在等腰
6、直角三角形中,点,分别为,上的动点,且,当的值最小时,的长为_【答案】如图,过点作,且,连接,如图1所示,又,当三点共线时,取得最小值,此时如图2所示,在等腰直角三角形中,设,即取得最小值为,故答案为:图1 图28.(2022河北)如图,点在抛物线C:上,且在C的对称轴右侧(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为,平移该胶片,使所在抛物线对应的函数恰为求点移动的最短路程【答案】(1),对称轴为直线,抛物线开口向下,有最大值,即的最大值为4,把代入中得:,解得:或,点在C的对称轴右侧,;(2),是由向左平移3个单位,再
7、向下平移4个单位得到,平移距离为,移动的最短路程为59.(2022河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14,点M的俯角为7已知爸爸的身高为1.7m(1)求C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位)(参考数据:取4,取4.1)【答案】(1)解:水面截线,在中,解得(2)过点作,交MN于D点,交半圆于H点,连接OM,过点M作MGOB于G,如图所示:水面截线,为最大水深,且,即,即,在中,即,解得,最大水深约为米10.(2022河南)为弘扬民
8、族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目滚铁环器材由铁环和推杆组成小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为BAD,点O,A,B,C,D在同一平面内当推杆AB与铁环O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果(1)求证:BOCBAD90(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得已知铁环O的半经为25cm,推杆AB的长为75cm,求此时AD的长【答案】(1)证明:O与水平地面相切于点C, ,AB与
9、O相切于点B,过点作,即BOCBAD90(2)如图,过点作的平行线,交于点,交于点,则四边形是矩形, ,在中,(cm),在中,cm,(cm),(cm),(cm),cm,(cm)11.(2022贵阳)已知二次函数y=ax2+4ax+b(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(1,e),(3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当2m1时,n的取值范围是1n1,求二次函数的表达式【答案】(1)解:y=ax2+4ax+
10、b=a(x2+4x+4-4)+b= a(x+2)2+b-4a,二次函数图象的顶点坐标为(-2,b-4a);(2)解:由(1)知二次函数的图象的对称轴为直线x=-2,又二次函数的图象与x轴交于A,B两点,AB=6,A,B两点的坐标分别为(-5,0),(1,0),当a cd;当a0时,画出草图如图:e=f cd;(3)解:点M(m,n)是二次函数图象上的一个动点,当a0时,根据题意:当m=-2时,函数有最小值为-1,当m=1时,函数值为1,即,解得:,二次函数的表达式为y=x2x-综上,二次函数的表达式为y=x2x-或y=x2x+12.(2022绥化)在平面直角坐标系中,已知一次函数与坐标轴分别交
11、于,两点,且与反比例函数的图象在第一象限内交于P,K两点,连接,的面积为(1)求一次函数与反比例函数的解析式;(2)当时,求x的取值范围;(3)若C为线段上的一个动点,当最小时,求的面积【答案】(1)解:一次函数与坐标轴分别交于,两点,把,代入得,解得,一次函数解析式为过点P作轴于点H,又,在双曲线上,(2)解:联立方程组得,解得, ,根据函数图象可得,反比例函数图象直线上方时,有或,当时,求x的取值范围为或,(3)解:作点K关于x轴的对称点,连接交x轴于点M,则(1,-2),OM=1,连接交x轴于点C,连接KC,则PC+KC的值最小,设直线的解析式为把代入得,解得,直线的解析式为当时,解得,
12、13.(2022牡丹江、鸡西)如图,已知抛物线(a0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧(1)若抛物线过点M(2,2),求实数a的值;(2)在(1)的条件下,解答下列问题;求出BCE的面积;在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标【答案】解:(1)将M(2,2)代入抛物线解析式得:,解得:a=4(2)由(1)抛物线解析式,当y=0时,得:,解得:点B在点C的左侧,B(4,0),C(2,0)当x=0时,得:y=2,E(0,2)SBCE=62=6,抛物线对称轴为直线x=1连接BE,与对称轴交于点H,即为所求设直线BE解析式为y=kx+b,将B(4,0
展开阅读全文