2022年全国各地中考数学试题 一次函数 解答题汇编 (含答案).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022年全国各地中考数学试题 一次函数 解答题汇编 (含答案).docx》由用户(alice)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年全国各地中考数学试题 一次函数 解答题汇编 含答案 2022 全国各地 中考 数学试题 一次 函数 解答 汇编 答案 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、2022年全国各地中考数学试题一次函数解答题汇编(含解析) 班级 姓名 1(2022益阳)如图,直线yx+1与x轴交于点A,点A关于y轴的对称点为A,经过点A和y轴上的点B(0,2)的直线设为ykx+b(1)求点A的坐标;(2)确定直线AB对应的函数表达式2(2022济宁)某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如表:货车类型载重量(吨/辆)运往A地的成本(元/辆)运往B地的成本(元/辆)甲种161200900乙种121000750(1)求甲、乙两种货车各用了多少辆;(2)如果前往A地的甲、乙两种货车共12辆,所运物资不
2、少于160吨,其余货车将剩余物资运往B地设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆写出w与t之间的函数解析式;当t为何值时,w最小?最小值是多少?3(2022兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1和k2两个值中的最大值叫做点P的“倾斜系数”k(1)求点P(6,2)的“倾斜系数”k的值;(2)若点P(a,b)的“倾斜系数”k2,请写出a和b的数量关系,并说明理由;若点P(a,b)的“倾斜系数”k2,且a+b3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:yx运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾
3、斜系数”k,请直接写出a的取值范围4(2022盐城)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示(1)小丽步行的速度为 m/min;(2)当两人相遇时,求他们到甲地的距离5(2022牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象请解答下列问题:(1)填空:甲的速度为 米/
4、分钟,乙的速度为 米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案6(2022长春)已知A、B两地之间有一条长440千米的高速公路甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示(1)m ,n ;(2)求两车相遇后,甲车距A地的路程y与x之
5、间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程7(2022通辽)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算8(2022铜仁市)在平面直角坐标系内有三点A(1,4)
6、、B(3,2)、C(0,6)(1)求过其中两点的直线的函数表达式(选一种情形作答);(2)判断A、B、C三点是否在同一直线上,并说明理由9(2022沈阳)如图,在平面直角坐标系中,一次函数ykx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3)(1)求直线AB的函数表达式;(2)过点C作CDx轴于点D,将ACD沿射线CB平移得到的三角形记为ACD,点A,C,D的对应点分别为A,C,D,若ACD与BOC重叠部分的面积为S,平移的距离CCm,当点A与点B重合时停止运动若直线CD交直线OC于点E,则线段CE的长为 (用含有m的代数式表示);当0m时,S与m的关系式为 ;
7、当S时,m的值为 10(2022广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨(1)求A、B两厂各运送多少吨水泥;(2)现甲地需要水泥240吨,乙地需要水泥280吨受条件限制,B厂运往甲地的水泥最多150吨设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元求w与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由11(2022北京)在平面直角坐标系xOy中,函数ykx+b(k0)的图象过点(4,3),(2,0),且与y轴交于
8、点A(1)求该函数的解析式及点A的坐标;(2)当x0时,对于x的每一个值,函数yx+n的值大于函数ykx+b(k0)的值,直接写出n的取值范围12(2022遵义)遵义市开展信息技术与教学深度融合的“精准化教学”,某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台(1)求A,B型设备单价分别是多少元;(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用13(2022包头)由于精准扶贫的措施科学
9、得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y,草莓价格m(单位:元/千克)与x之间的函数关系如图所示(1)求第14天小颖家草莓的日销售量;(2)求当4x12时,草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?14(2022黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后
10、立即原路原速又运往B市乙车维修完毕后立即返回A市两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示(1)甲车速度是 km/h,乙车出发时速度是 km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案15(2022吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快在一段时间内,水温y()与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 (2)求乙壶中水温y关于加
11、热时间x的函数解析式(3)当甲壶中水温刚达到80时,乙壶中水温是 16(2022齐齐哈尔)在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是 米,乙的步行速度是 米/分;(2)图中a ,b ,c ;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)17(2022泰州)定义:对于一次函数y1ax+b、y2c
12、x+d,我们称函数ym(ax+b)+n(cx+d)(ma+nc0)为函数y1、y2的“组合函数”(1)若m3,n1,试判断函数y5x+2是否为函数y1x+1、y22x1的“组合函数”,并说明理由;(2)设函数y1xp2与y2x+3p的图象相交于点P若m+n1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;若p1,函数y1、y2的“组合函数”图象经过点P是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由18(2022广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体
13、质量x(kg)满足函数关系ykx+15下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量19(2022鄂州)在“看图说故事”活动中,某学习小组设计了一个问题情境:小明从家跑步去体育场,在那里锻炼了一阵后又走到文具店买圆规,然后散步走回家小明离家的距离y(km)与他所用的时间x(min)的关系如图所示:(1)小明家离体育场的距离为 km,小明跑步的平均速度为 km/min;(2)当15x45时,请直接写出y关于x的函数表达式;(3)当小明离家2km时,求他离开家所用的时间20(2022河北)如图
14、,平面直角坐标系中,线段AB的端点为A(8,19),B(6,5)(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数ymx+n(m0,y0)中,分别输入m和n的值,使得到射线CD,其中C(c,0)当c2时,会从C处弹出一个光点P,并沿CD飞行;当c2时,只发出射线而无光点弹出若有光点P弹出,试推算m,n应满足的数量关系;当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光求此时整数m的个数21(2022天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓
15、2km小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓给出的图象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系请根据相关信息,解答下列问题:()填表:离开学生公寓的时间/min585087112离学生公寓的距离/km0.5 1.6 ()填空:阅览室到超市的距离为 km;小琪从超市返回学生公寓的速度为 km/min;当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为 min()当0x92时,请直接写出y关于x的函数解析式22(2022苏州)某水
16、果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值23(2022陕西)如图,是一个“函数求值机”的示意图,其中y
17、是x的函数下面表格中,是通过该“函数求值机”得到的几组x与y的对应值输入x64202输出y622616根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为 ;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值24(2022新疆)A,B两地相距300km,甲、乙两人分别开车从A地出发前往B地,其中甲先出发1h如图是甲,乙行驶路程y甲(km),y乙(km)随行驶时间x(h)变化的图象,请结合图象信息,解答下列问题:(1)填空:甲的速度为 km/h;(2)分别求出y甲,y乙与x之间的函数解析式;(3)求出点C的坐标,并写出点C的实际意义25(2022衡阳)冰墩墩(BingDwe
18、nDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国小雅在某网店选中两种玩偶决定从该网店进货并销售第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?26(2022湖州)某校组织学生从学校
19、出发,乘坐大巴前往基地进行研学活动大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值27(2022绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度
20、(单位:米)x00.511.52y11.522.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:ykx+b(k0),yax2+bx+c(a0),y(k0)(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象(2)当水位高度达到5米时,求进水用时x28(2022云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共
21、30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍怎样购买,才能使总费用W最少?并求出最少费用29(2022凉山州)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和关于进一步加强中小学生体质健康管理工作的通知精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元(1)求A、B两种类型羽毛球拍的单价(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B型羽毛球拍数量的
展开阅读全文