[信息技术2.0微能力]:中学七年级数学下(第六单元)实数的相关运算-中小学作业设计大赛获奖优秀作品[模板]-《义务教育数学课程标准(2022年版)》.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《[信息技术2.0微能力]:中学七年级数学下(第六单元)实数的相关运算-中小学作业设计大赛获奖优秀作品[模板]-《义务教育数学课程标准(2022年版)》.docx》由用户(天方乘风)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息技术2.0微能力 模板 义务教育数学课程标准2022年版 信息技术 2.0 能力 中学 七年 级数 第六 单元 实数 相关 运算 中小学 作业 设计 大赛 获奖 优秀作品 义务教育 数学课程 标准 下载 _其它资料_数学_初中
- 资源描述:
-
1、中学七年级数学下(第六单元)实数的相关运算义务教育数学课程标准(2022年版)微能力2.0认证-中小学作业设计大赛目 录作业设计方案撰写:TFCF优秀获奖作品29第六章实数单元作业设计一、单元信息基本信息学科年级学期教材版本单元名称数学七年级第二学期沪科版实数单元组织方式团自然单元 重组单元课时信息序号课时名称对应教材内容1平方根第 6.1(P2-5)2立方根第 6.1(P6-8)3无理数、实数的意义第 6.2(P9-11)4实数的相关运算第 6.2(P12-17)5单元复习小结 评价(P18-21)二、单元分析( 一) 课标要求义务教育数学课程标准 (2022 年版) (以下简称课标 (20
2、22 年版) ) 在第四学段“实数”的“内容要求”:了解无理数和实数,知道实数由有理数和 无理数组成,了解实数与数轴上的点一一对应。能用数轴上的点表示实数,能比 较实数的大小。能借助数轴理解相反数和绝对值的意义,会求实数的相反数和绝 对值。了解平方根、算数平方根、立方根的概念,会用根号表示数的平方根、算 数平方根、立方根。了解乘方与开方互为逆运算,会用平方运算求百以内完全平 方数的平方根,会用立方运算求千以内完全立方数 (及对应的负整数) 的立方根, 会用计算器计算平方根和立方根。能用有理数估计一个无理数的大致范围。了解 近似数,在解决实际问题中,能用计算器进行近似计算,会按问题的要求进行简
3、单的近似计算。课标中“学业要求”:了解无理数和实数,知道实数由有理数和无理数组成, 感悟数的扩充;初步认识实数与数轴上的点具有一一对应关系,能用数轴上的 点表示一些具体的实数,能比较实数的大小;能借助数轴理解相反数和绝对值的 意义,会求实数的相反数、绝对值;知道平方根、算术平方根、立方根的概念, 会用根号表示平方根、算术平方根、立方根;知道乘方与开方互为逆运算,会用 乘方运算求百以内完全平方数的平方根和千以内完全立方数的立方根(及对应的 负整数),会用计算器计算平方根和立方根;能用有理数估计一个无理数的大致 范围;初步认识近似数,在解决实际问题中,能用计算器进行近似计算,会按问 题的要求进行简
4、单的近似计算,会对结果取近似值。通过本单元的作业练习让学 生体验从具体情境中抽象出数学符号的过程,掌握必要的运算技能;学会从具体 的情境中发现与提出问题,进而分析和解决问题,增强应用意识,提高实践能力。 在运用数学表述和解决问题的过程中,感悟数学的抽象性、严谨性和应用的广泛 性,体会数学的应用价值,促进核心素养的形成。(二) 教材分析1.内容分析本章主要研究平方根、算术平方根、立方根的概念和求法,实数的有关概念 和运算。它是在学生已经学习了正方形的面积与边长的关系,有理数的相关概念1(如绝对值、相反数) 、有理数的运算 (加、减、乘、除、乘方) 、运算律、运 算性质等内容的基础上安排的,是按照
5、“概念性质运算”的顺序呈现教学内 容,符合代数研究的基本思路。让学生从已知正方形的面积求边长等实际问题中 抽象概念,研究特例归纳特征,运用特征再去解决问题,体现特殊到一般和一般 到特殊的思考过程。立方根和实数的学习都体现了类比思想。数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、 建立数学模型的基石。通过本单元的学习,学生能初步感受到概念、运算的一致 性和发展性,认识到“数形结合”的思想方法和作用,体现数学研究的整体性和 育人价值,同时也为二次根式、一元二次方程以及解三角形等知识的学习奠定基 础,使学生从数量角度清晰准确地认识、理解和表达现实世界。因此,本单元的 重点是平方
6、根、算术平方根的概念和求法,以及实数的概念。2.知识网络图(三) 学情分析从学生的认知规律看:在小学阶段,学生已经掌握了正方形面积和边长的关系,正方体体积和棱长的关系;在“有理数”一章,学生已经能根据乘法法则进 行有理数的乘方运算,感受到了概念、运算的一致性和数学研究的发展性。这些 都为实数的学习提供了思考问题的方法及解决问题的策略。从学生的心理特征看:七年级 (下) 的学生已经具有一定的独立思考能力, 渴望用数学知识分析解决现实世界中的实际问题。但是,学生的思维方式和思维 能力有待提高,理解能力和推理能力有限。因此,应增强开方与乘方的联系以及 用实际情境来解释开方运算,强化平方根、立方根的性
7、质,能用有理数估计无理 数的大致范围,提升学生的运算能力、推理能力,让学生形成实事求是的科学态 度。因此,本单元难点是:平方根和实数的概念。三、单元学习与作业目标( 一) 学习目标1知道算术平方根、平方根、立方根、无理数和实数的相关概念。2会用平方运算求百以内完全平方数的平方根,会用立方运算求千以内完2全立方数 (及对应的负整数) 的立方根,会用计算器求平方根和立方根。3知道有理数和无理数的概念,知道实数与数轴上的点一一对应,能求实 数的相反数、绝对值。了解数的范围由有理数扩充到实数后,概念、运算等的一 致性及其发展变化;4.能用有理数估计一个无理数的大致范围,发展学生的数感和估算能力(二)
8、作业目标1.复习巩固平方根、算术平方根、立方根、实数的有关概念,通过作业练习 强化对概念的辨析与理解,规范书写格式,掌握正确的符号语言,建立符号意识, 提升学生的抽象能力和运算能力。2.认识平方根、立方根的性质、近似值的估计、实数运算,能用计算器进行 简单的近似计算,会对结果取近似值。通过思考获取数学知识,培养学生选择恰 当的运算方式的能力,形成规范化思考问题的品质。3.通过练习,增强数学学习的自信心,树立善于思考、严谨求实的科学态度。四、单元作业设计思路1.注重知识的基础性与探索性,留给学生探索交流的空间,切实调动学生的 主观能动性,同时注重数学思想的引导与渗透。2.分层设计作业。每课时均设
9、计“基础性作业”和“发展性作业” (要求学 生有选择的完成) 。具体设计体系如图:3.注重评价的多元化,从而对学生进行全方面的评价,最后科学的反馈和改进,保证作业的有效性。3五、课时作业设计第 1 课时 (6.1 平方根)【布置时机】平方根、算术平方根概念和求法,会用计算器求一个正数 的平方根的学习之后.【作业目标】1.强化对平方根及算术平方根概念的认识 ,会用乘方与开方的关系或 计算器求一个正数的平方根,体会平方根与算术平方根概念的区别与联系.2.准确地用根号表示正数的平方根、算术平方根 ,规范书写格式 ,掌 握正确的符号语言.【作业内容】一、【基础性作业】 (时间要求 10 分钟)1.下列
10、各数是否有平方根?并说明理由.-16 0 (- 3)2 【设计意图】从具体数中加深对平方根本质的理解,熟练运用平方根的概念及性 质,养成讲道理、有条理的思维品质.2.求下列各式的平方根及算术平方根,(1) 16 (2) 0.01 (3)并用式子表示.2564【设计意图】通过平方与开平方的互逆关系,进一步巩固平方根与算术平方根的 区别与联系,使学生掌握正确的符号语言.3.用计算器求下列各式的值 (精确到 0.001)(1) (2) - (3) 【设计意图】加深对“根号”符号的认识和理解,同时让学生经历用计算器求一 个正数的平方根的过程,深化对平方根概念的理解,并感受无限不循环小数的存 在,为数的
11、扩充及实数的学习打下基础,调动学生的学习兴趣,培养学生主动探 索的学习习惯.4.如果一个正数的平方根是a 和b ,那么a + b = , = .【设计意图】利用一个正数的两个平方根的关系,结合字母表示数,提高学生的 符号意识和推理能力.二、【发展性作业】 (时间要求 10 分钟)1.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根 是什么?用含有a 的代数式表示.【设计意图】加深对字母表示数、乘方与开平方知识的综合应用,会用数学语言 表达与交流.2.如果一个正方形的面积扩大为原来的4 倍,那么它的边长扩大为原来的多少4倍?扩大 9 倍边长为原来的多少倍?扩大 n 倍呢?【
12、设计意图】从学生熟悉的数学情境中,让学生经历从具体数字到用字母表示的 过程,体现了从特殊到一般的数学思想,加深对面积求边长与开平方知识的联系, 会用数学的方法解决问题,提高学生的应用意识.三、【评价设计】作业评价表评价指标等级备 注ABC答题的准确性A 等,答案正确、过程正确。B 等,答案正确、过程有问题。C 等,答案不正确,有过程不完整;答案不准确,过 程错误、或无过程。答题的规范性A 等,过程规范,答案正确。B 等,过程不够规范、完整,答案正确。C 等,过程不规范或无过程,答案错误。解法的创新性A 等,解法有新意和独到之处,答案正确。B 等,解法思路有创新,答案不完整或错误。C 等,常规解
13、法,思路不清楚,过程复杂或无过程。综合评价等级AAA、AAB 综合评价为 A 等; ABB、BBB、AAC 综合评 价为 B 等;其余情况综合评价为 C 等。56.1 平方根作业单班级_一、【基础性作业】 (时间要求 10 分钟)姓名_1.下列各数是否有平方根?并说明理由.-16 0 (- 3)2 学生自评:_2.求下列各式的平方根及算术平方根,并用式子表示:(1) 16 (2) 0.01 (3) 3.用计算器求下列各式的值 (精确到 0.001) .(1) (2) - (3) 4.如果一个正数的平方根是是a 和b ,那么a + b = , = .学生互评:_二、【发展性作业】 (时间要求 1
14、0 分钟)1.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根 是什么?用含有a 的代数式表示.2.如果一个正方形的面积扩大为原来的 4 倍,那么它的边长扩大为原来的多少 倍?扩大 9 倍边长为原来的多少倍?扩大 n 倍呢?【总结反思】完成时间大约 分钟 ,本次做题的依据是什么? 你有什么收获?【教师评价】 6学生作业情况分析我班学生有 50 人,大部分学生能够按时完成作业,完成质量较好,具体分析 情况如下:1、完成作业时间:完成作业时间15 分钟内20 分钟内25 分钟内人数26186比例52%36%12%上表数据显示:52%同学能在 15 分钟内完成作业,这部分学生基
15、础扎实、思 维敏捷,同时具有良好的数学学习习惯;36%同学能在 20 分钟内完成作业,这部 分同学学习态度端正,勤奋刻苦,对待作业认真,书写工整规范;12%同学会花 上 25 分钟甚至更长的时间来做作业,他们对数学学习兴趣不浓,学习不主动, 没有较好的学习习惯,应注重培养其学习兴趣.2、作业类型完成情况统计作业类型基础性作业发展性作业认真完成人数4642比例92%84%从上面数据看出:基础性作业:1-2 题大部分学生理解平方根,算术平方根 的概念及区别,符号语言使用准确.个别学生将平方根和算术平方根混淆,符号 表达不正确,容易出现错误.第 3 题在操作用计算器取近似值时,对于被开方数 为分数操
16、作不太熟练,书写时把“ 必 ”写成“=”,应注意强调书写的规范性.第 4 题考查平方根的特征,并用字母表示它们之间的关系,个别学生第二个填空出 现错误,错误原因是因为运算法则不熟练.发展性作业:第 1 题是考查平方与开平方的关系,以及用字母表示数的综合 运用,个别学生表示该自然数时存在困难,应注重个别辅导;第 2 题要求学生结 合实际问题对开平方灵活运用,大多数学生都能较好地完成,少数学生在分析正方形面积扩大为原来的4 倍时 (即面积从a2 扩大为4a2 对应边长从a 扩大为2a )未找准面积与边长之间的关系,导致出错,应注重这部分学生的思维能力和推理 能力的培养.7第 2 课时 (6.1 立
17、方根)【布置时机】立方根的概念和求法,以及会用计算器求一个数的立方根 的学习之后.【作业目标】1.知道立方根的概念及符号表示 ,通过作业练习加深对 “ 一个数立方 根的唯一性”的认识,提升学生的符号意识;2.通过借助立方求立方根的过程 ,再次感受立方根与平方根的区别 , 发展学生的数学思维,提升运算能力;进一步体会“互逆”思想和“类比” 思想.【作业内容】一、【基础性作业】 (时间要求 10 分钟)1.填空: 的算术平方根为_. _. 的立方根为_ . _.【设计意图】进一步巩固平方根、立方根的概念及运算,注意开方的符号语言和 文字语言相结合,从问题解决中获得数学活动经验,建立学习数学的自信心
18、.2.求下列各数的立方根,并用式子表示出来.(1) - 125 (2) 0.064 (3) 0 (4) 3 【设计意图】通过立方与开立方的互逆关系,进一步加深对立方根概念的理解, 通过书写格式的规范性,体会数学表达的简洁与精确.3.用计算器求下列各式的值 (精确到 0.001) .(1)3 ( 一 3)2 (2) 一 (3) 3 【设计意图】通过利用计算器求一个数的立方根,加深对立方根概念的理解, 深 化对“二次根号和三次根号”符号的认识和理解;再次感受无限不循环小数的存 在,为数的扩充打下基础,同时体会计算器快捷和精确的功能,激发探索知识的 学习兴趣.4. 已知一个体积为 125 m3 的正
19、方体纸盒,它的棱长应是多少?【设计意图】通过建立数学与现实世界之间的联系,让学生进一步感受立方根的 实际意义,引导学生“会用数学的思维思考现实世界”.二、【发展性作业】 (时间要求 10 分钟)1.已知x 一 2 的平方根是 2 ,2x + y + 7 的立方根是 3,求x2 + y 2 的算术平方根.【设计意图】通过平方根与立方根的综合运用,进一步加深对平方根、算术平方 根和立方根概念的灵活运用,养成讲道理、有条理的思维品质.82. 在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的 圆柱体烧杯中,并用量筒量得烧杯排出的水的体积为64cm3 ,小明又将铁块从水中提起,量得烧
展开阅读全文
链接地址:https://www.163wenku.com/p-3279588.html