[信息技术2.0微能力]:中学九年级数学上(第二单元)A-中小学作业设计大赛获奖优秀作品[模板]-《义务教育数学课程标准(2022年版)》.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《[信息技术2.0微能力]:中学九年级数学上(第二单元)A-中小学作业设计大赛获奖优秀作品[模板]-《义务教育数学课程标准(2022年版)》.docx》由用户(天方乘风)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息技术2.0微能力 模板 义务教育数学课程标准2022年版 信息技术 2.0 能力 中学 九年级 数学 第二 单元 中小学 作业 设计 大赛 获奖 优秀作品 义务教育 数学课程 标准 2022 年版 下载 _其它资料_数学_初中
- 资源描述:
-
1、中学九年级数学上(第二单元)义务教育数学课程标准(2022年版)微能力2.0认证-中小学作业设计大赛模板目 录作业设计方案撰写:TFCF优秀获奖作品3第 23 章 解直角三角形单元内容第一课时锐角的三角函数-正切第二课时锐角的三角函数-正弦与余弦第三课时30o,45o,60o 角的三角函数值第四课时互余两角的三角函数关系第五课时一般锐角的三角函数值 第六课时解直角三角形第七课时解直角三角形的应用-仰角、俯角问题第八课时解直角三角形的应用-方位角问题第九课时解直角三角形的应用-坡度(坡角)问题第十课时初高衔接-两个斜率公式第十一课时 单元复习小结教材分析本章内容是三角学中最基础的内容,也是今后进
2、一步学习三角学的必要基础. 教材在运用学习过的相似三角形知识的基础之上推出当直角三角形的锐角大小确定后,直角三角形的两边之比为一定值,从而引入锐角三角函数的概念,进一步强化了数形结合思想,且有利于数学知识间的串联、延伸.解直角三角形的应用的知识在实际中应用比较广泛,本章首先从学生比较感兴趣的汽车爬坡能力引出正切三角函数,也是生活中应用最多的三角函数,如山坡的坡度、物体的倾斜程度等都是用正切来刻画的.类比正切的概念,进而引出正弦和余弦函数.教材中 运用直角三角形中的锐角三角函数的概念求出特殊角的三角函数值,可以计算含有特殊角的三角函数值得式子,或是由已知三角函数值求出对应的锐角.对于一般的锐角三
3、角函数值的计算问题,教材中详细介绍了运用计算器由锐角求三角函数值,及由三角函数值求锐角的方法,并适当地加强这方面计算能力的训练.解直角三角形的应用题、教学活动与课题学习不仅巩固三角函数知识,还有利于培养学生的空间想象能力,让学生通过对实物的观察、或是通过给出的条件,画出对应的平面图形,教材提供了相应的训练,目的在于通过对锐角三角函数知识的学习,着力培养学生的数学能力以及数形结合的思想.本章重难点:重点:锐角的三角函数的概念和直角三角形的解法难点:锐角的三角函数的概念单元学习目标1、经历对现实生活中测量高度、宽度等活动,了解锐角三角函数的概念,能够正确运用正弦、余弦、正切的符号表示直角三角形中两
4、边之比,熟记30o,45o,60o 角的各个三角函数值,并且会运用它们进行计算,会由特殊三角函数值求出角的度数.102、能够利用计算器由已知锐角求出它的三角函数值,或由已知三角函数的值求出相应的锐角.3、理解直角三角形中的边与边的关系,角与角的关系,边与角的的关系,会运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.4、会运用解直角三角形的有关知识来解决某些简单的实际问题,特别是测量中锐角三角函数知识的运用,培养学生解决实际问题的能力和在生活中应用数学的意识. 5、通过锐角三角函数及解直角三角形的学习,进一步认识和体会函数及函数的变化与对应的思想,领悟数形结合的思想方法.单元作业
5、目标1、前置性小研究作业目标让学生根据自己的知识水平和生活经验进行尝试性学习,“以学定教”,让学生带着问题走进课堂,提高课堂学习效率.2、知识与技能巩固作业目标这类题面向全体学生,目的主要在于把握学生对基础知识的掌握程度,了解学生的知识与技能水平.能够熟练利用三角函数的概念求角的三角函数值以及解直角三角形.3、能力发展作业目标这类题主要是检验学生对知识的灵活运用程度,由知识与技能到能力发展过渡, 让学生能够利用三角函数解决一些拐弯题、变式题甚至中考题,达到能够举一反三的目的.4、素养提升作业目标设置一些小组探究题、操作题、生活实践题等不同类型的题目,让学生体验生活中处处有数学,让人人学有价值的
6、数学,让不同的人在数学得到不同的发展.因此, 这类题的设置主要针对的是学优生,让他们能够在探究中提升数学学科素养,达到真正的育人目标.单元作业整体设计思路作业是课堂教学的延续,可以帮助学生预习、复习、巩固知识、训练技能、培养学生的各种能力和创新意识,开发学生的学习潜能,帮助学生养成良好的学习习惯,充分发挥作业的育人功能,落实“双减”政策,促进学生全面发展.我们将本单元作业分为四类:一、前置性小研究作业:从教材实际出发,设置一些简单、根本、开放性的问题, 让学生经历自主探究、操作、实践等过程,作为预习作业,为课堂小组交流展示归纳新知作准备,激发学生学习兴趣,发展学生探究问题和解决问题的能力,是进
7、行生本课堂的重要手段.二、知识与技能巩固作业:围绕本单元数学基本技能设计的知识与技能作业,根据教材特点,设置面向全体学生的基础性作业,检验学生预习新知、接受新知的能力, 也能够及时、有效地反馈学习效果.三、能力发展作业:这是针对本单元知识灵活运用的反馈设置,是对基础知识的凝练与升华.根据数学新课程标准以及“双减”政策,合理、有效地设置试题,促进学生能力的提高.四、素养提升作业:基于单元一体化考虑及让不同的人在数学上得到不同的发展, 在学习本单元各小节过程中,布置一些探究型、操作性、实践性等作业,让学生的个性得到发展,素养得到提升.四大类作业的设计,环环相扣,层层递进,将本单元的数学要素与人文要
8、素融为一体,实现数学与语文、物理等学科融合渗透,促进五育并举.作业评价标准评价级别参照标准ABCD自我评价小组评价教师评价书写字迹整洁美观字迹工整字迹欠工整,有涂改现象字迹潦草,有多处涂改前 置 性小 研 究主动探究并带动小组成员参与探究,对问题进行交流、分析、归纳积极探究思考问题,参与小组成员交流、分析、归纳活动完成部分探究活动,未认真思考,未积极参与小组交流未进行探究活动,未参与小组交流知识与技能巩固积极认真思考, 全部完成,正确率高积极思考并完成,有少量错误未全面思考, 错误率较高未思考,全面放弃能力发展主动思考,全部完成,正确率高主动思考和完成,有少量错误未全面思考, 错误率较高未思考
9、,全面放弃,或思考部分但错误率高素养提升主动思考、完成且正确率高主动思考完成,有少量错误未全面完成, 错误率高未思考,全面放弃单元小结思维导图完全原创,单元知识呈现完整、简明、扼要,积极收集典型错题和中考靓题,主动思考素养提升并带动小组成员讨论探究解决问题思维导图大部分原创, 单元知识呈现比较完 整、清楚, 收集部分典型错题和中考靓题,主动思考素养提升,参与小组交流、分析活动思维导图参 考笔记较多, 或单元知识 呈现有缺漏, 未积极收集 典型错题和 中考靓题,未认真思考素 养提升或未 积极参与小 组交流思维导图未做或照搬笔记,单元知识呈现过分简单或复 杂,未收集典型错题和中考靓题, 未思考素养
10、提升或未参与小组交流探究活动单元质量检测卷面整洁,正确率高卷面整洁, 有少量错误卷面一般,错误率较高卷面不干 净,错误率高单元作业设计目录第一课时锐角的三角函数-正切6第二课时锐角的三角函数-正弦与余弦8第三课时30o,45o,60o 角的三角函数值 12第四课时互余两角的三角函数关系14第五课时一般锐角的三角函数值16第六课时解直角三角形19第七课时解直角三角形的应用-仰角、俯角问题22第八课时解直角三角形的应用-方位角问题25第九课时解直角三角形的应用-坡度(坡角)问题28第十课时初高衔接-两个斜率公式30第十一课时 单元复习小结34单元质量检测作业39单元质量检测作业答案与分析45第一课
11、时 锐角的三角函数-正切一、前置性小研究:(可根据自己的实际选做一个)活动一:【我当小记者】采访你居住小区的汽车车主,衡量汽车性能的重要指标是哪些? 哪个性能和本节学习的知识有关呢?活动二:【我是小骑手】从我校食堂到教学楼有一个上坡,当你从食堂骑车上坡到教学楼, 感受一下,想一想斜坡怎样改变,骑车上来会更轻松?【设计意图】本活动是预习作业,都是实践活动,让学生从实际生活中发现本节相关知识如汽车的爬坡能力与坡度关联,从学生骑车上坡体验坡度与哪些元素有关,激发学生学习本节知识的欲望,同时让学生从生活中体验数学与实际的联系,让学生知道用数学眼光看世界,同时锻炼了学生的表达能力,交际能力,实践活动能力
12、,发展核心素养.二、知识与技能巩固(A 类)(完成时间 8 至 10 分钟)1、在 RtABC中,C90,AC=2,BC1,则 tanA的值为()A. 2B. 2 55C. 5 5D. 1 2【作业分析】学生根据画图直接观察,两条直角边已知,代入正切函数公式计算即可。【答案】选 D2、在 RtABC中,C90,AB=5,BC3,则B的正切值是()A. 4 5B. 3 5C. 4 3D. 3 4【作业分析】先根据勾股定理求出B对边即可解决问题【答案】选 C3、小明把爷爷的放大镜放在直角三角板的一个锐角上面,则小明从放大镜里看到的锐角的正切值与原来的正切值相比()A 变大B 变小C 不变D 不确定
13、【作业分析】只要锐角的大小不改变,三角函数值就不变【答案】选 C4、在平面直角坐标系中,点 P坐标为(3, 3),且 OP与 x轴正半轴的夹角为,则 tan= .【作业分析】利用点的坐标与 x 轴,y 轴的距离关系即可得【答案】 335、从城关中学食堂到教学楼有一斜坡 AB,坡度 i=1: 3,小华沿坡面向上走了 5m,则小华沿竖直方向升高了 m.【作业分析】利用坡度为坡角的正切知坡角为 30,斜边为 5m,则对边为 2.5m.【答案】2.56、如图,某小型拦水坝的横截面是四边形 ABCD,DC/AB,AD 为背水坡,其坡度为 i=1.5:1, 已知坝高为 4.5m,则背水坡水平宽度 AE 为
14、多少?.DC4.5mABE【作业分析】由坡度定义及 DE=4.5m 代入比例式即可求解【答案】AD 坡度 i=1.5:1DE:AE=1.5:1 ,将 DE=4.5m 代入得AE=3m【设计意图】1 至 6 题是必做题,重在考查正切、坡度、坡角的定义,利用定义进行基本求边求角的运算,同时为后面解直角三角形及其应用奠定基础.三、能力发展(B 类)(完成时间 8 至 10 分钟)7、如图ABC的顶点都在正方形网格格点上,则 tan B 的值为( )A.A. 10B 1103C.3 1010D.3BC【作业分析】利用方格网中B所在的直角三角形直角边分别为 1,3 求解.【答案】D变式题:如图,每个小正
15、方形边长均为 1,A,B,C 均为格点,则AtanBAC= BC【作业分析】连接 BC,利用方格网中勾股定理求出ABC 三边,由三边满足勾股定理的逆定理知ABC=90,利用正切定义求解即可.【答案】 22【设计意图】第 7 题及变式题为选做题,重在考查学生的数学学习素养,如运用转化思想、类比的方法解决数学问题,同时考验学生学科知识综合运用能力,如解决方格网中勾股定理及其逆定理、三角函数求值的综合问题,四、素养提升(C 类)(完成时间 8 至 10 分钟)8、如图所示,在ABC,已知BAC=120,AB=4,ABC的面积为 2 3,求 tan B 的值.ABC【作业分析】构造 AB 边上的高线
16、CD,利用面积公式求出 CD,再利用勾股定理求出 AD,接着利用正切定义求出 tan B= 35AD【答案】作 AB 边上的高 CD,AB=4,ABC的面积为 2 3BC1 4CD=2 3, 得 CD= 32BAC=120, CAD=180120=60ACD=30AC=2AD设 AD=x,AC=2x,在 RtACD 中2 + ( 3)2 = (2)2,解得 x=1(负根舍去)BD=5,tan B= 35【设计意图】本题设计利用本节三角函数等知识,从直角三角形问题拓展到解决斜三角形里面的求值问题,让学生通过探究体会将斜三角形问题转化到直角三角形问题,体现转化数学思想,同时本题也考查学生运用学科综
17、合知识解决问题的能力,如三角形面积公式、直角三角形的相关性质定理等【作业评价】自我评价小组评价教师评价书写前置性小研究知识与技能巩固能力发展素养提升第二课时锐角的三角函数-正弦、余弦一、前置性小研究量一量,算一算,想一想:观察课本 113 面图 23-4,测量ABC,AB1C1,AB2C2 三边长度,求出在这三个三角形中对边,邻边的值,比较三个三角形中这两个比值有什么特点?斜边斜边由此活动你有什么猜想吗?【设计意图】本活动通过动手操作,让学生从测量、求值、比较中猜想“对边”,“邻边”几乎为定值(因测量有误差),激发学生对本节新课的求知欲.斜边斜边二、知识与技能巩固(A 类)(完成时间 5 至
18、8 分钟)1、已知在 RtABC 中,C90,AC4,BC3,则 sin A 的值是()34A.B.5534C. D.43【作业分析】利用正弦定义代入计算即可【答案】选 A2、在 RtABC 中,B90,BC=3,sin A14,则 AC 的长度为 【作业分析】由题意知 BC:AC=1:4,BC=3 代入比例式可得 AC=12【答案】123、 在ABC 中,AC=BC=1,AB= 2,则 sin A= ,cos B= 【作业分析】利用勾股定理逆定理判定ABC 为直角三角形,C90,再利用正弦和余弦的定义求解【答案】 2 2,2254、如图,直线 yx5 与 x 轴、y 轴分别交于点 A,B,则
19、 cosBAO 的值是 ()A. 51212B. 5131213C.D.1312yBAO【作业分析】先求出直线 AB 与 x 轴和 y 轴的交点坐标分别为 A(12,0),B(0,5)得OA=12,OB=5,故 AB=13,由余弦定义即可得出答案为 C【答案】选 C【设计意图】1 至 4 题为必做题,为巩固本节正弦、余弦的定义理解,利用正弦、余弦解决基本三角函数求值问题,同时强化学生综合运用知识的能力,如勾股定理,一次函数性质等综合运用.三、能力发展(B 类)(完成时间 8 至 12 分钟)5、如图,菱形 ABCD 对角线 AC,BD 相交于点 O,AC=16cm,菱形 ABCD 面积为 96
20、,试求DAC 的三角函数值.DCOAB【作业分析】利用菱形 ABCD 面积与对角线的关系可求出 BD,再利用菱形性质和勾股定理求出直角三角形AOD 三边,即可求出DAC 的三角函数值【答案】菱形面积为 96,1 ACBD=96,将 AC=16 代入,得 BD=12,2由菱形性质知AOD=90,AO=8,OD=6,由勾股定理知 AD=10, 在 RtAOD 中25sinDAC= 610=3,5cosDAC=8 =410 5,tanDAC=6=38 46、如图,在四边形 ABCD 中,D90,CD6,AD8,AB26,BC24,则 cos B DCAB【作业分析】连接 AC,由勾股定理知 AC=1
展开阅读全文
链接地址:https://www.163wenku.com/p-3279525.html