书签 分享 收藏 举报 版权申诉 / 17
上传文档赚钱

类型20春九数下(北师大版)2.4 第2课时商品利润最大问题 精品课件.ppt

  • 上传人(卖家):田田田
  • 文档编号:327477
  • 上传时间:2020-03-04
  • 格式:PPT
  • 页数:17
  • 大小:34.42MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《20春九数下(北师大版)2.4 第2课时商品利润最大问题 精品课件.ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    20春九数下北师大版2.4 第2课时商品利润最大问题 精品课件 20 春九数下 北师大版 2.4 课时 商品 利润 最大 问题 精品 课件 下载 _九年级下册_北师大版(2024)_数学_初中
    资源描述:

    1、,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第2课时 商品利润最大问题,2.4 二次函数的应用,九年级数学下(BS) 教学课件,学习目标,1.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点),导入新课,情境引入,短片中,卖家使出浑身解数来赚钱. 商品买卖过程中,作为商家利润最大化是永恒的追求.如果你是商家,如何定价才能获得最大利润呢?,讲授新课,某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是 元,销售利润 元.,探究交流,18000,6000,数量

    2、关系,(1)销售额= 售价销售量;,(2)利润= 销售额-总成本=单件利润销售量;,(3)单件利润=售价-进价.,例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?,涨价销售 每件涨价x元,则每星期售出商品的利润y元,填空:,20,300,20+x,300-10x,y=(20+x)(300-10x),建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.,6000,自变量x的取值范围如何确定?,营销规律是价格上涨,销量

    3、下降,因此只要考虑销售量就可以,故300-10x 0,且x 0,因此自变量的取值范围是0 x 30.,涨价多少元时,利润最大,最大利润是多少?,y=-10x2+100x+6000,,当 时,y=-1052+1005+6000=6250.,即涨价5元时,最大利润是6250元.,降价销售 每件降价x元,则每星期售出商品的利润y元,填空:,20,300,20-x,300+18x,y=(20-x)(300+18x),建立函数关系式:y=(20-x)(300+18x),,即:y=-18x2+60x+6000.,例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖

    4、出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?,6000,综合可知,应定价58元时,才能使利润最大。,自变量x的取值范围如何确定?,营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x 0,且x 0,因此自变量的取值范围是0 x 20.,降价多少元时,利润最大,是多少?,当 时,即降价 元时,最大利润是6050元.,即:y=-18x2+60x+6000,,由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?,知识要点,求解最大利润问题的一般步骤,(1)建立利润与价格之间的函数关系式: 运用“总利润=总售价-

    5、总成本”或“总利润=单件利润 销售量”,(2)结合实际意义,确定自变量的取值范围;,(3)在自变量的取值范围内确定最大利润: 可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.,y=(160+10x)(120-6x),例2 某旅馆有客房120间,每间房的日租金为160元,每天都客满经市场调查,如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?最高总收入是多少?,解:设每间客房的日租金提高10x元,则每天客房出租数会 减少6x间,设客房日租金为y万元,则,当x=2时,y有最大值,且y最大=

    6、19440.,答:每间客房的日租金提高到180元时,客房日租金的总收入 最高,最大收入为19440.,=60(x2)2+19440.,x0,且1206x0,,0x20.,这时每间客房的日租金为160+102=180(元).,1.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x元(20 x 30)出售,可卖出(60020x)件,为使利润最大,则每件售价应定为 元.,25,当堂练习,2.进价为80元的某衬衣定价为100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价x(元)之间的函数关系式为 .每月利润w(元)与衬衣售价x(元)之

    7、间的函数关系式为 .(以上关系式只列式不化简).,y=2000-5(x-100),w=2000-5(x-100)(x-80),3. 某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销售量y(件)满足当x=130时,y=70,当x=150时,y=50,且y是x的一次函数,为了获得最大利润S(元),每件产品的销售价应定为( ),A160元 B180元 C140元 D200元,A,4.生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是( ),A1月,2月

    8、B1月,2月,3月 C3月,12月 D1月,2月,3月,12月,D,5. 某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图. (1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?,解:(1)由题中条件可求y=-x2+20x-75,-10,对称轴x=10,当x=10时,y值最大,最大值为25. 即销售单价定为10元时,销售利润最 大,为25元;,(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?,(2)由对称性知y=16时,x=7和13. 故销售单价在7 x 13时,利润不低于16元.,课堂小结,最大利润问题,建立函数关系式,总利润=单件利润销售量或总销量=总售价-总成本.,确定自变量的取值范围,涨价:要保证销售量0; 降价:要保证单件利润0.,确定最大利润,利用配方法或公式求最大值或利用函数简图和性质求出.,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:20春九数下(北师大版)2.4 第2课时商品利润最大问题 精品课件.ppt
    链接地址:https://www.163wenku.com/p-327477.html
    田田田
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库