用机器学习的方法理解社会媒体课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《用机器学习的方法理解社会媒体课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器 学习 方法 理解 社会 媒体 课件
- 资源描述:
-
1、Understanding Social Mediawith Machine LearningXiaojin Zhujerryzhucs.wisc.eduDepartment of Computer SciencesUniversity of WisconsinMadison,USACCF/ADL Beijing 2013Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 20131/95Outline1234Spatio-Temporal Signal Recovery from Social MediaMachine Lea
2、rning BasicsProbabilityStatistical EstimationDecision TheoryGraphical ModelsRegularizationStochastic ProcessesSocioscope:A Probabilistic Model for Social MediaCase Study:RoadkillZhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 20132/95Spatio-Temporal Signal Recovery from Social MediaOutlin
3、e1234Spatio-Temporal Signal Recovery from Social MediaMachine Learning BasicsProbabilityStatistical EstimationDecision TheoryGraphical ModelsRegularizationStochastic ProcessesSocioscope:A Probabilistic Model for Social MediaCase Study:RoadkillZhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijin
4、g 20133/95Spatio-Temporal Signal Recovery from Social MediaSpatio-temporal Signal:When,Where,How MuchDirect instrumental sensing is di cult and expensiveZhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 20134/95Spatio-Temporal Signal Recovery from Social MediaHumans as SensorsZhu (U Wiscons
5、in)Understanding Social MediaCCF/ADL Beijing 20135/95Spatio-Temporal Signal Recovery from Social MediaHumans as SensorsNot“hot trend”discovery:We know what event we want to monitorNot natural language processing for social media:We are given areliable text classifier for“hit”Our task:precisely estim
6、ating a spatiotemporal intensity function fstof a pre-defined target phenomenon.Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 20136/95Spatio-Temporal Signal Recovery from Social MediaChallenges of Using Humans as SensorsKeyword doesnt always mean eventIII was just told I look like dead
7、crow.Dont blame me if one day I treat you like a dead crow.Human sensors arent under our controlLocation stamps may be erroneous or missingIIII3%have GPS coordinates:(-98.24,23.22)47%have valid user profile location:Bristol,UK,New York50%dont have valid location informationHogwarts,In the tra c.blah
8、,Sitting On A TacoZhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 20137/95Spatio-Temporal Signal Recovery from Social MediaProblem DefinitionInput:A list of time and location stamps of the target posts.Output:fst Intensity of target phenomenon at location s(e.g.,NewYork)and time t(e.g.,0-
9、1am)Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 20138/95Spatio-Temporal Signal Recovery from Social MediaWhy Simple Estimation is Badfst=xst,the count of target posts in bin(s,t)Justification:MLE of the model x Poisson(f)However,IIIPopulation Bias:Assume fst=fs0t0,if more users in(s,t
10、),thenxst xs0t0Imprecise location:Posts without location stamp,noisy user profilelocationZero/Low counts:If we dont see tweets from Antarctica,no penguinsthere?Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 20139/95Machine Learning BasicsOutline1234Spatio-Temporal Signal Recovery from So
11、cial MediaMachine Learning BasicsProbabilityStatistical EstimationDecision TheoryGraphical ModelsRegularizationStochastic ProcessesSocioscope:A Probabilistic Model for Social MediaCase Study:RoadkillZhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201310/95Machine Learning BasicsProbabilit
12、yOutline1234Spatio-Temporal Signal Recovery from Social MediaMachine Learning BasicsProbabilityStatistical EstimationDecision TheoryGraphical ModelsRegularizationStochastic ProcessesSocioscope:A Probabilistic Model for Social MediaCase Study:RoadkillZhu (U Wisconsin)Understanding Social MediaCCF/ADL
13、 Beijing 201311/95Machine Learning BasicsProbabilityProbabilityThe probability of a discrete random variable A taking the value a isP(A=a)2 0,1.Sometimes written as P(a)when no danger of confusion.NormalizationJoint probability P(A=a,B=b)=P(a,b),the two events bothhappen at the same time.Marginaliza
14、tion P(A=a)=B”.P(a,b)The product rule P(a,b)=P(a)P(b|a)=P(b)P(a|b).Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201312/95Bayes rule P(a|b)=P(b|a)P(a).In general,P(a|b,C)=P(b|C)Rp(D|)p()d the evidence,Machine Learning BasicsProbabilityBayes RuleP(b)P(b|a,C)P(a|C)where C can be one or mo
15、rerandom variables.Bayesian approach:when is model parameter,D is observed data,we havep(|D)=p(D|)p()p(D),Rp(D|)d 6=1),IIIIp()is the prior,p(D|)the likelihood function(of,not normalized:p(D)=p(|D)the posterior.Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201313/95Machine Learning Basic
16、sProbabilityIndependenceThe product rule can be simplified as P(a,b)=P(a)P(b)i A andB are independentEquivalently,P(a|b)=P(a),P(b|a)=P(b).Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201314/95R x2P(x1 X 1 is possible!Integrates to 1.x1Marginalization p(x)=p(x)dx=11p(x)dx1 p(x,y)dyZhu (
17、U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201315/95pMachine Learning BasicsProbabilityExpectation and VarianceThe expectation(“mean”or“average”)of a function f under theprobability distribution P isEPf=P(a)f(a)aEpf=p(x)f(x)dxxIn particular if f(x)=x,this is the mean of the random variabl
18、e x.The variance of f isVar(f)=E(f(x)Ef(x)2=Ef(x)2Ef(x)2The standard deviation is std(f)=Var(f).Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201316/95Machine Learning BasicsProbabilityMultivariate StatisticsWhen x,y are vectors,Ex is the mean vectorCov(x,y)is the covariance matrix with
19、 i,j-th entry beingCov(xi,yj).Cov(x,y)=Ex,y(xEx)(yEy)=Ex,yxyExEyZhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201317/958 (d-sided die)f(x)=nx1,.,xdxk B(1)(Marginal)x N(x,A)(Conditional)y|x N(y+CA1(xx),BCA1C)Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201322/95Machine Lear
20、ning BasicsProbabilityMore Continuous Distributions0with 0.Generalizes factorial:(n)=(n 1)!when n is a positive integer.(+1)=()for 0.parameter 0 and scale parameter 0f(x)=1()x1ex/,x 0.Conjugate prior for Poisson rate.Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201323/95Machine Learnin
21、g BasicsStatistical EstimationOutline1234Spatio-Temporal Signal Recovery from Social MediaMachine Learning BasicsProbabilityStatistical EstimationDecision TheoryGraphical ModelsRegularizationStochastic ProcessesSocioscope:A Probabilistic Model for Social MediaCase Study:RoadkillZhu (U Wisconsin)Unde
22、rstanding Social MediaCCF/ADL Beijing 201324/95Machine Learning BasicsStatistical EstimationParametric ModelsA statistical model H is a set of distributions.In machine learning,we call H the hypothesis space.A parametric model can be parametrized by a finite number ofparameters:f(x)f(x;)with paramet
23、er 2 Rd:H=f(x;):2 Rdwhere is the parameter space.Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201325/95Statistical EstimationMachine Learning BasicsParametric ModelsWe denote the expectationE(g)=Zxg(x)f(x;)dxE means Ex f(x;),not over di erent s.data1All(parametric)models are wrong.Some
24、 are more useful than others.Zhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201326/95Machine Learning BasicsStatistical EstimationNonparametric modelA nonparametric model cannot be parametrized by a fixed number ofparameters.Model complexity grows indefinitely with sample sizeExample:H=P
25、 :V arP(X)0,favor homogeneous chainsWhen the parameter a 1(X)Multivariate Gaussian1xi,xj are conditionally independent given all other variables,if andonly if ij=0When ij 6=0,there is an edge between xi,xjZhu (U Wisconsin)Understanding Social MediaCCF/ADL Beijing 201362/95Machine Learning BasicsGrap
展开阅读全文