用户画像及推荐系统课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《用户画像及推荐系统课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用户 画像 推荐 系统 课件
- 资源描述:
-
1、第7章 用户画像及 推荐系统商业智能:方法与应用目 录O N T E N T S7.1 用户画像7.2 推荐系统用户画像基本概念单个用户画像流程群体用户画像流程用户画像评估用户画像应用推荐系统基本概念相似度度量方法及最近邻确定基于用户的最近邻推荐基于物品的最近邻推荐基于用户与基于物品的方法的比较基于模型的协同过滤7.1 用户画像用户画像基本概念单个用户画像流程群体用户画像流程用户画像评估用户画像应用用户画像基本概念定义特点 分类l单个用户画像 研究对象:某一特定场景下的具体用户 目标:对不同用户做出个体区分,深入了解用户需求l群体用户画像 研究对象:某一特定情境下的特定用户群体 目标:将具有相
2、似特征的用户聚类,方便进一步识别用户群体l真实性l标签化l动态性l领域性 l用户角色(User Persona)倾向于从不同群体中抽象出不同类型的用户角色l用户画像(User Profile)用户信息的标签化;侧重于从不同维度对同一类用户进行刻画,从而进一步细分某一类用户单个用户画像基本流程03 特征提取兴趣属性标签单个用户画像基本流程图单个用户画像基本流程01 数据收集数据类型某电商网站数据分类图行为类型搜索浏览购买发表点赞 接触点帆布鞋匡威 双 十 一大促页 用户数据 静态信息数据商业属性职业动态信息数据人口基本属性性别年龄地域婚姻状况消费等级消费周期行为数据 消费数据消费商品消费总额单个
3、用户画像基本流程01 数据收集数据收集方法123社会调查通过访谈、观察、调研等社会调查的方法,直接收集获取用户画像所需要的数据平台数据库直接从企业数据库采集用户数据或购买接口获得数据 网络数据采集使用网络采集方法获取用户公开数据,如:网络爬虫等单个用户画像基本流程02 数据清洗01去除/补全有缺失的数据去除/修改格式和内容错误的数据去除非必需数据02030504去除/修改逻辑错误的数据不同来源数据关联性验证03 特征提取人口属性标签单个用户画像基本流程人口属性标签内容 性别、年龄、职业、收入等个人信息人口属性标签特点 比较稳定,且在实际应用中不是全部用户提供人口基本属性数据构建人口属性标签方法
4、 标签扩散模型用填写信息的用户作为样本,对无标签用户进行属性预测有信息的用户行为特征模型无信息的用户提取训练预测人口属性标签建立过程示意图03 特征提取兴趣属性标签单个用户画像基本流程 活跃用户用户画像构建方法 分析用户发表文章生成相应兴趣画像获取文章关键词构建兴趣偏好词典赋予不同兴趣偏好权重得到活跃用户兴趣爱好标签 非活跃用户用户画像构建方法 分析用户关注账户或点赞文章计算用户所关注账户信息或所点赞文章信息中每个实体概念所属网站类别的权重得到由网站类别构成的兴趣爱好得到非活跃用户的兴趣爱好03 特征提取地理位置属性标签单个用户画像基本流程常驻地属性标签 基于用户的IP地址信息,对用户的IP地
5、址进行接续,得到常驻城市标签GPS轨迹数据 从手机基于位置的服务(LBS)进行收集导航类APP获取LBS日志数据清洗与汇总 LBS位置与POI匹配用户POI场景判断POI类型到访次数时间段分布天数分布居住工作购物就餐GPS地理位置画像流程单个用户画像基本流程03 特征提取兴趣属性标签用户画像标签体系群体用户画像流程01n 单个用户画像获取 数据收集、数据清洗和特征提取方法获取用户画像数据 推荐系统的数据统计模块获得用户画像数据02n 用户画像相似度计算(1)定量标签相似度计算 计算公式:不同定量标签数据归一化处理方法:线性函数转换、对数函数转化、反正切函数 转化等 定量标签距离计算方法:欧式距
6、离、曼哈顿距离、余弦相似度、Jacard系数等(2)定性标签相似度计算 将定性标签映射为定量标签,采用定量标签相似度计算方法 基于概念的相似度计算方法群体用户画像流程03n 用户画像聚类及群体用户画像生成 用户画像聚类:对单个用画像根据相似度计算结果进行分类 聚类原则:使类别内差异最小,类别间差异最大 聚类目标:发现用户画像建隐含关系,提取核心用户画像 群体用户画像生成:根据聚类结果,抽象出每个聚类群体的典型用户画像用户画像评估010203定义:被打上正确标签的用户比例计算公式:准确率定义:被打上标签的用户占全量用户的比例计算公式:覆盖率不同特征标签时效性要求不同,需要建立合理的更新机制,以保
7、证标签时间上的时效性时效性用户画像应用应用二应用一应用三基础信息查询构建用户画像的基础上建立用户标签库及用户关系库,实现基础信息查询,便于企业深入了解用户需求精准营销依托用户画像,分析用户的行为习惯及消费习惯,为用户的消费行为打上专属标签,进而实现精准推送产品或服务优化用户画像实现对不同特征的用户进行路径分析,发现用户从新用户到流失用户的隐含原因,进而实现公司运营优化用户画像应用应用四应用五个性化业务定制主要包括个性化推荐、个性化支持和个性化信用评级,同时根据用户实时行为,不断调整用户画像,对定制内容实时反馈调整企业战略制定用户画像在宏观层面的重要意义主要体现在市场走向判断、用户群体划分和产品
8、定位三个方面7.2 推荐系统推荐系统基本概念相似度度量方法及最近邻确定基于用户的最近邻推荐基于物品的最近邻推荐基于用户与基于物品的方法的比较基于模型的最近邻推荐7.2.1.1 推荐系统基本概念定义推荐系统是为满足电子商务发展和解决网络信息超载而产生的。比如基于内容的推荐算法、基于协同过滤的推荐算法、基于知识的推荐算法、基于社交网络的推荐算法等。协同过滤推荐算法 :推荐系统中最早、最成熟的技术。7.2.1.2 协同过滤推荐定义协同过滤推荐算法即根据用户过往对物品或信息的偏好,发现物品或内容本身的相关性,或者用户间的相关性,基于这些相关性预测出当前用户对其它物品或信息的喜好程度,以决定是否进行推荐
9、。从评分的角度可以解释为,用已知的评分去估计未知的评分。分类 基于记忆(memory-based)的基于模型(model-based)的基于用户(user-based)的最近邻推荐基于物品(item-based)的最近邻推荐7.2.2 相似度度量方法及最近邻确定欧几里得距离(Euclidean Distance)皮尔逊相关系数(Pearson Correlation Coefficient)余弦相似度(Cosine Similarity)相似度度量方法010203)(),(2iiyxyxd),(11),(yxdyxsim22)()()()(),(),(yixiyixiyxyxyxPearson
展开阅读全文