电子教案高等数学(四版)演示文稿10电子课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电子教案高等数学(四版)演示文稿10电子课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电子 教案 高等数学 演示 文稿 10 课件
- 资源描述:
-
1、第十章第十章 多元函数微分学多元函数微分学 第一节第一节 多元函数的极限及连续性多元函数的极限及连续性 第二节第二节 偏导数偏导数 第三节第三节 全微分全微分第四节第四节 多元复合函数微分法及偏导数多元复合函数微分法及偏导数 的几何应用的几何应用第五节第五节 多元函数的极值多元函数的极值第一节第一节 多元函数的极限及连续性多元函数的极限及连续性一、一、多元函数多元函数二、二、二元函数的极限与连续性二元函数的极限与连续性 1.实例分析实例分析 例例 1 1 设设矩矩形形的的边边长长分分别别 x和和 y,则则矩矩形形的的面面积积 S为为 xyS.在在此此,当当 x和和 y每每取取定定一一组组值值时
2、时,就就有有一一确确定定的的面面积积值值S即即S依依赖赖于于 x和和 y的的变变化化而而变变化化 例例 2 2 具有一定质量的理想气体,其体积为具有一定质量的理想气体,其体积为 V,压强,压强为为 P,热力学温度,热力学温度 T 之间具有下面依赖关系之间具有下面依赖关系VRTP(R是常数)是常数).在这一问题中有三个变量在这一问题中有三个变量 P,V,T,当,当 V 和和 T 每取每取定为一组值时,按照上面的关系,就有一确定的压强定为一组值时,按照上面的关系,就有一确定的压强 P 第一节第一节 多元函数的极限及连续性多元函数的极限及连续性一、多元函数一、多元函数 二元函数的定义二元函数的定义
3、定义定义 1 1 (二元函数二元函数)设有三个变量设有三个变量,x y和和,z如果如果当变量当变量,x y在它们的变化范围在它们的变化范围 D中任意取定一对值时,中任意取定一对值时,变量变量 z 按照一定的对应规律都有惟一确定的值与它们按照一定的对应规律都有惟一确定的值与它们对应,则称对应,则称 z为变量为变量,x y的二元函数,记为的二元函数,记为),(yxfz,其中其中 x与与 y称为自变量,函数称为自变量,函数 z也叫因变量自变量也叫因变量自变量 x与与 y的变化范围的变化范围 D称为函数称为函数 z的定义域的定义域 区域的概念:由一条或几条光滑曲线所围成的具有连区域的概念:由一条或几条
4、光滑曲线所围成的具有连通性通性(如果一块部分平面内任意两点均可用完全属于此部如果一块部分平面内任意两点均可用完全属于此部分平面的折线连结起来,这样的部分平面称为具有连通性分平面的折线连结起来,这样的部分平面称为具有连通性)的部分平面,这样的部分平面称为区域围成区域的曲线的部分平面,这样的部分平面称为区域围成区域的曲线称为区域的边界,边界上的点称为边界点,包括边界在内称为区域的边界,边界上的点称为边界点,包括边界在内的区域称为闭域,不包括边界在内的区域称为开域的区域称为闭域,不包括边界在内的区域称为开域 如果一个区域如果一个区域D内任意两点之间的距离都不超过某内任意两点之间的距离都不超过某一常数
5、一常数M,则称,则称D为有界区域,否则称为有界区域,否则称 D为无界区域为无界区域 常常见见区区域域有有矩矩形形域域:dycbxa,圆圆域域:).0()()(22020yyxx 圆圆域域22020)()(|),(yyxxyx一一般般称称为为平平面面上上点点),(000yxP的的 邻邻域域,而而称称不不包包含含点点 0P的的邻邻域域为为无无心心邻邻域域 二元函数的定义域通常是由平面上一条或几条光滑二元函数的定义域通常是由平面上一条或几条光滑曲线所围成平面区域曲线所围成平面区域.二元函数定义域的求法与一元函二元函数定义域的求法与一元函数类似,就是找使函数有意义的自变量的范围,其定义数类似,就是找使
6、函数有意义的自变量的范围,其定义域的图形一般由平面曲线围成域的图形一般由平面曲线围成 解解 由根式函数的定义容易知道,该函数的定义域由根式函数的定义容易知道,该函数的定义域为满足为满足222ayx的的,yx即定义域为即定义域为 222|),(ayxyxD.这里这里D在在xOy面上表示一个以原点为圆心,面上表示一个以原点为圆心,a 为半为半径的圆域它为有界闭区域(如下图所示)径的圆域它为有界闭区域(如下图所示).O 2 2 2 a y x y x a a 例例 5 5 求二元函数求二元函数)ln(yxz的定义域的定义域 解解 自变量自变量yx,所取的值必须满足不等式所取的值必须满足不等式0 yx
7、,即定义域为即定义域为 0|),(yxyxD.点集点集D在在xOy面上表示一个在直线上方的半平面面上表示一个在直线上方的半平面(不不包含边界包含边界0 yx),如下图所示,此时如下图所示,此时 D 为无界开区域为无界开区域 O y x 例例 6 6 求二元函数求二元函数1)9ln(2222yxyxz的定的定义域义域 解解 这个函数是由这个函数是由)9ln(22yx 和和122 yx两部两部分构成,所以要使函数分构成,所以要使函数 z有意义,有意义,yx,必须同时满足必须同时满足,01,092222yxyx 即即9122yx,函数定义域为函数定义域为.91|),(22yxyxD点集点集 D 在在
8、xOy平面上表示以原点为平面上表示以原点为圆圆 心,半径为心,半径为 3 的圆与以原的圆与以原点为点为 圆心的单位圆所围成的圆心的单位圆所围成的圆环圆环 域域(包含边界曲线内圆包含边界曲线内圆122 yx,但不包含边界曲线外圆但不包含边界曲线外圆922 yx)(如右图所示如右图所示)x O 1 3 y 2.二元函数的几何表示二元函数的几何表示 把自变量把自变量yx,及因变量及因变量 z 当作空间点的直角坐标,先在当作空间点的直角坐标,先在xOy平面内作出函数平面内作出函数),(yxfz 的定义域的定义域 D(如下图如下图),再,再过过 D 域中的任一点域中的任一点),(yxM作垂直于作垂直于x
9、Oy平面的有向线段平面的有向线段MP,使,使P点的竖坐标为与点的竖坐标为与),(yx对应的函数值对应的函数值 z 当当 M 点在点在D中变动时,对应的中变动时,对应的 P点的轨迹就是函数点的轨迹就是函数),(yxfz 的几何的几何图形,它通常是一张曲面,而其定义域图形,它通常是一张曲面,而其定义域 D就是此曲面在就是此曲面在 xOy平面上的投影平面上的投影 y x z O X Y M D P 例例 7 7 作二元函数作二元函数yxz1的图形的图形 解解 二元函数二元函数yxz1的图形是空间一平面,其图的图形是空间一平面,其图形如形如下下图图所示所示 x y z O z=1-x-y 例例 8 8
10、 作作二二元元函函数数22yxz的的图图形形 解解 此此函函数数的的定定义义域域为为xOy面面上上任任意意点点且且 0z,即即曲曲面面上上的的点点都都在在xOy面面上上方方其其图图形形为为旋旋转转抛抛物物面面,如如下下图图所所示示 z 2 2 y x z x y O 例例 9 9 作二元函数作二元函数222yxRz)0(R的图形的图形 解解 此二元函数的定义域为此二元函数的定义域为222Ryx,即,即 xOy坐坐标面上的以标面上的以O为圆心,为圆心,R为半径的圆,且为半径的圆,且Rz 0其图其图形为上半圆周,如下图所示形为上半圆周,如下图所示 y x z R R R O 解解 1.二元函数的极
11、限二元函数的极限 定义定义 2 2 设二元函数设二元函数),(yxfz,如果当点如果当点),(yx以任以任意方式趋向点意方式趋向点),(00yx时,时,),(yxf总趋向于一个确定的常数总趋向于一个确定的常数A,那么就称,那么就称A是二元函数是二元函数),(yxf当当),(yx),(00yx时的时的极限,记为极限,记为 Ayxfyxyx),(lim),(),(00或或Ayxfyyxx),(lim00.同一元函数的极限一样,二元函数的极限也有类似的同一元函数的极限一样,二元函数的极限也有类似的四则运算法则四则运算法则 二、二元函数的极限与连续性二、二元函数的极限与连续性2.2.二元函数的连续性二
12、元函数的连续性 定义定义 3 3 设函数设函数),(yxfz 在点在点),(000yxP的某邻域内的某邻域内有定义,如果有定义,如果),(),(lim0000yxfyxfyyxx 则称二元函数则称二元函数),(yxfz 在点在点),(000yxP处连续如果处连续如果),(yxf在区域在区域 D 内的每一点都连续内的每一点都连续,则称则称),(yxf在区域在区域 D上连续上连续 若若令令yyyxxx00,,则则式式),(),(lim0000yxfyxfyyxx,可可写写成成0),(),(lim000000yxfyyxxfyx.即即 0lim00zyx.这这里里z为为函函数数),(yxf在在点点)
13、,(00yx处处的的全全增增量量,即即),(),(0000yxfyyxxfz.如如果果函函数数),(yxfz 在在点点0P),(00yx处处不不连连续续,则则称称点点0P),(00yx为为函函数数),(yxf的的不不连连续续点点或或间间断断点点 同一元函数一样,二元连续函数的和、差、积、商同一元函数一样,二元连续函数的和、差、积、商(分分母不等于零母不等于零)及复合函数仍是连续函数及复合函数仍是连续函数 由此还可得“多元初等函数在其定义域内连续”由此还可得“多元初等函数在其定义域内连续”思思考考题题 1.将二元函数与一元函数的极限、连续概念相比将二元函数与一元函数的极限、连续概念相比较,说明二
14、者之间的区别较,说明二者之间的区别 2.若若二二元元函函数数),(yxfz 在在区区域域 D内内分分别别对对yx,都都连连续续,试试问问),(yxfz 在在区区域域 D上上是是否否必必定定连连续续?第二节第二节 偏导数偏导数 一、一、偏导数偏导数 二、二、高阶偏导数高阶偏导数引例引例 一定量的理想气体的压强一定量的理想气体的压强 P,体积,体积 V,热力学,热力学温度温度 T 三者之间的关系为三者之间的关系为 VRTP(R 为常量为常量).当温度不变时(等温过程),压强当温度不变时(等温过程),压强 P 关于体积关于体积 V 的变的变变变化率就是化率就是 2ddVRTVPT常数常数,这种形式的
15、变化率称为二元函数的偏导数这种形式的变化率称为二元函数的偏导数 第二节第二节 偏导数偏导数 一、一、偏导数偏导数1 1.偏偏导导数数的的定定义义 定义定义 设函数设函数 ),(yxfz 在点在点),(00yx的某一邻域内有的某一邻域内有 定义,当定义,当 y固定在固定在 0y而而 x在在 0 x处有改变量处有改变量 x时相应地函数时相应地函数有改变量有改变量),(),(0000yxfyxxf如果极限如果极限 xyxfyxxfx),(),(lim00000 存在,则称此极限为函数存在,则称此极限为函数),(yxfz 在点在点),(00yx处对处对 x 的偏的偏 导数,记为导数,记为 ),(,00
16、000000yxfzxfxzxyyxxxyyxxyyxx或或.类似地,当类似地,当 x固定在固定在 0 x,而,而 y在在 0y处有改变量处有改变量 y,如果极限如果极限yyxfyyxfy),(),(lim00000存在,则称此极限为函存在,则称此极限为函数数),(yxfz 在点(在点(x0,y0)处对)处对 y的偏导数,记为的偏导数,记为 ),(,00000000yxfzyfyzyyyxxyyyxxyyxx或或.如如果果函函数数),(yxfz 在在区区域域 D内内每每一一点点 ),(yx处处对对 x的的偏偏导导数数都都存存在在,且且这这个个偏偏导导数数仍仍是是 ,x y的的函函数数,称称),
17、(,yxfzxfxzxx或或为为函函数数),(yxfz 对对自自变变量量 x的的偏偏导导数数.类类似似地地,可可以以定定义义函函数数),(yxfz 对对自自变变量量 y的的偏偏导导数数,记记为为 ),(,yxfzyfyzyy或或.偏导数的求法:偏导数的求法:从偏导数的定义可以看到,偏导数的实质就是把一从偏导数的定义可以看到,偏导数的实质就是把一个自变量固定,而将二元函数个自变量固定,而将二元函数),(yxfz 看成是另一个自看成是另一个自变量的一元函数的导数因此,求二元函数的偏导数变量的一元函数的导数因此,求二元函数的偏导数,只须用一元函数的微分法,把一个自变量暂时视为常量,只须用一元函数的微
18、分法,把一个自变量暂时视为常量,而对另一个自变量进行一元函数求导即可而对另一个自变量进行一元函数求导即可 例例 1 1 求求yxzsin2的的偏偏导导数数 解解 把把 y看看作作常常量量对对 x求求导导数数,得得yxxzsin2 把把 x看看作作常常量量对对 y求求导导数数,得得yxyzcos2 解解 偏导数偏导数 2212yxxxz,2212yxyyz,在在(1(1,2)2)处的偏导数就是偏导数在处的偏导数就是偏导数在(1(1,2)2)处的值,处的值,所以所以 31)2,1(xz,.32)2,1(yz 证证 因为因为PVRT,所以,所以VP2VRT 又又 VPRT,所以,所以TVPR 同样由
19、同样由 TRPV,所以,所以PTRV 因此因此,VPTVPT)(2VRTPRRV1PVRT 2 2偏导数的几何意义偏导数的几何意义 从偏导数的定义可知,二元函数从偏导数的定义可知,二元函数),(yxfz 在点在点),(00yx处 对处 对 x 的 偏 导 数的 偏 导 数xf),(00yx,就 是 一 元 函 数,就 是 一 元 函 数),(0yxfz 在在 0 x处 的 导 数处 的 导 数 xdd),(0yxf0 xx 设 设 0M),(,(0000yxfyx为曲面为曲面),(yxfz 上的一点,过上的一点,过 0M作作平 面平 面 0yy,这 个 平 面 在 曲 面 上 截 得 一 曲
20、线这 个 平 面 在 曲 面 上 截 得 一 曲 线0),(yyyxfz 由 一 元 函 数 的 导 数 的 几 何 意 义 可 知 由 一 元 函 数 的 导 数 的 几 何 意 义 可 知0d),(d0 xxxyxf.即即),(00yxfx就是这条曲线就是这条曲线 xC在在点点 0M处的处的切线切线0MxT对对 x 轴的斜率,即轴的斜率,即 00(,)tanxfxy.同理,同理,),(00yxfy是曲面是曲面),(yxfz 与平面与平面0 xx 的交的交线线yC在点在点0M处的切线处的切线0MyT对对 y 轴的斜率,即轴的斜率,即 tan),(00yxfy.x y z 0 M x C y
21、T x T y C 0 x 0 y O 图形如下所示图形如下所示:对于二元函数对于二元函数),(yxfz 的两个偏导数的两个偏导数 xz,yz,一般说来,它们仍然是自变量一般说来,它们仍然是自变量 ,x y的函数如果的函数如果 xz,yz的偏导数存在,可以继续对的偏导数存在,可以继续对 x或或 y求偏导数,则称求偏导数,则称这两个偏导数的偏导数为函数这两个偏导数的偏导数为函数),(yxfz 的二阶偏数 这的二阶偏数 这 样的二阶偏导数共有四个,分别表示为样的二阶偏导数共有四个,分别表示为 ),()(22yxfxzxzxxx,),()(2yxfyxzxzyxy,),()(2yxfxyzyzxyx
22、,),()(22yxfyzyzyyy.二、二、高阶偏导数高阶偏导数其中第二其中第二、第三两个偏导数称为混合偏导数它们、第三两个偏导数称为混合偏导数它们求偏导数的先后次序不同,前者是先对求偏导数的先后次序不同,前者是先对 x后对后对 y求求导,后者是先对导,后者是先对y后对后对x求导类似地可以定义三阶、四求导类似地可以定义三阶、四阶、阶、n阶偏导数二阶及二阶以上的偏导数都称为阶偏导数二阶及二阶以上的偏导数都称为高阶偏导数高阶偏导数 解解 函数的一阶偏导数为函数的一阶偏导数为 3263xyyxxz,2239yxxyz,二阶偏导数为二阶偏导数为 22xz)(xzx)63(32xyyxx366yxy,
23、yxz2)(xzy)63(32xyyxy=22183xyx,xyz2)(yzx)9(223yxxx=22183xyx,22yz)(yzy)9(223yxxy218xy.从上例看到,从上例看到,3333yxyxz的两个二阶偏导数是相的两个二阶偏导数是相等的,但这个结论并不是对任意可求二阶偏导数的二元等的,但这个结论并不是对任意可求二阶偏导数的二元函数都成立,不过当两个二阶混合偏导数满足如下条件函数都成立,不过当两个二阶混合偏导数满足如下条件时,结论就成立时,结论就成立 定理定理 若若),(yxfz 的两个二阶混合偏导数在点的两个二阶混合偏导数在点),(yx连续,则在该点有连续,则在该点有 yxz
24、2xyz2.对于三元以上函数也可以类似地定义高阶偏导数,对于三元以上函数也可以类似地定义高阶偏导数,而且在偏导数连续时,混合偏导数也与求偏导的次序无而且在偏导数连续时,混合偏导数也与求偏导的次序无关关 例例 9 9 证明证明),(txTbxtabsine2满足热传导方程满足热传导方程22xTatT,其中,其中 a为正常数,为正常数,b为任意常数为任意常数 证明证明 因为因为 tTbxabtabsine22,xTbxbtabcose2,22xTbxbtabsine22,所以所以 22xTabxabtabsine22tT.思思考考题题 1 1.与与一一元元函函数数比比较较,说说明明二二元元函函数数
25、连连续续、偏偏导导之之间间的的关关系系 2 2.若若22yxz,试试求求xz11yx,且且说说明明其其几几何何意意义义 第三节第三节 全微分全微分 一、一、全微分的定义全微分的定义 二、二、全微分在近似计算中的应用全微分在近似计算中的应用一一元元函函数数的的微微分分概概念念回回顾顾 如 果 一 元 函 数如 果 一 元 函 数)(xfy 在 点在 点 x处 的 改 变 量处 的 改 变 量)()(xfxxfy,可以表示为关于,可以表示为关于 x的线性函数与的线性函数与一个比一个比x的高阶无穷小之和,即的高阶无穷小之和,即 )()(xfxxfyA)(xox.其中其中 A 与与 x无关,仅与无关,
展开阅读全文