书签 分享 收藏 举报 版权申诉 / 17
上传文档赚钱

类型2020北师大版八数下册 6.2 第2课时 利用四边形对角线的性质判定 精品课件.ppt

  • 上传人(卖家):田田田
  • 文档编号:326751
  • 上传时间:2020-03-03
  • 格式:PPT
  • 页数:17
  • 大小:529.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020北师大版八数下册 6.2 第2课时 利用四边形对角线的性质判定 精品课件.ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020北师大版八数下册 6.2 第2课时 利用四边形对角线的性质判定 精品课件 2020 北师大版八数 下册 课时 利用 四边形 对角线 性质 判定 精品 课件 下载 _八年级下册_北师大版(2024)_数学_初中
    资源描述:

    1、,6.2 平行四边形的判定,第六章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,八年级数学下(BS) 教学课件,第2课时 利用四边形对角线的性质判定 平行四边形,1.利用对角线互相平分判定平行四边形;(重点),2.平行四边形对角线相等的相关运用.(难点),学习目标,两组对边分别相等的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形,两组对角分别相等的四边形是平行四边形,平行四边形判定定理,AB=CD,AD=BC, 四边形ABCD是 ABCD, AB= CD, ABC D, 四边形ABCD是 ABCD, A= C, B= D, 四边形ABCD是 ABCD,复习引入,导入新课,将

    2、两根木条AC,BD的中点重叠,并用钉子固定,再用一根橡皮筋绕端点A,B,C,D围成一个四边形ABCD 想一想,AOBCOD吗?四边形ABCD的对边之间有什么关系?你得到什么结论?,A,C,B,O,D,讲授新课,合作探究,猜想:对角线互相平分的四边形是平行四边形.,已知:四边形ABCD中,OA=OC,OB=OD. 求证:四边 形ABCD是平行四边形.,证明:,在AOB和COD中,OA=OC (已知),OB=OD (已知),AOB=COD (对顶角相等),AOBCOD(SAS), BAO=OCD , ABO=CDO.,AB CD , AD BC,四边形ABCD是平行四边形.,对角线互相平分的四边形

    3、是平行四边形.,AO=CO,,BO=DO,四边形ABCD是平行四边形.,几何语言:,平行四边形判定定理3,总结归纳,1.请你识别下列四边形哪些是平行四边形?,70。,练一练,2.已知:E、F是平行四边形ABCD对角线AC上的两点,并且OE=OF. 求证:四边形BFDE是平行四边形,D,O,A,B,C,E,F,证明: 四边形ABCD是平行四边形, BO = DO. EO = FO, 四边形BFDE是平行四边形.,例1 已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF. 求证:四边形BFDE是平行四边形.,O,证明:连接BD,在ABCD中,AO=CO,BO=DO,AE=CF,AO

    4、-AE=CO-CF,EO=FO,又 BO=DO, 四边形BFDE是平行四边形.,(对角线互相平分的四边形是平行四边形),例2 填空:如图在四边形ABCD中,(1)若AB/CD,补充条件 ,使四边形ABCD为平行四边形; (2)若AB=CD,补充条件 ,使四边形ABCD为平行四边形; (3)若对角线AC、BD交于点O,OA=OC=3,OB=5, 补充条件 ,使四边形ABCD为平行四边形.,AD/BC,AD=BC,OD=5,(4)如图, ABCD 的对角线AC,BD相交于点O,E,F是AC上的两点,补充条件: ,使得四边形BFDE是平行四边形.,证明: 四边形ABCD是平行四边形,, AO=CO,

    5、BO=DO.,AE=CF ,, AO-AE=CO-CF,即EO=OF.,又 BO=DO.,四边形BFDE是平行四边形.,AE=CF,想想还有 其他证法吗?,想一想:判定一个四边形是平行边形可以从哪些角度思考?具体有哪些方法?,从边考虑,两组对边分别平行的四边形是平行四边形(定义法),两组对边分别相等的四边形是平行四边形(判定定理1),一组对边平行且相等的四边形是平行四边形(判定定理2),从角考虑,从对角线考虑,平行四边形的判定方法,两组对角分别相等的四边形是平行四边形(定义拓展),对角线互相平分的四边形是平行四边形(判定定理3),小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形你能在图

    6、中找出所有的平行四边形吗?并说说你的理由,试一试,解:有6个平行四边形,分别是: ABOF, ABCO, BCDO, CDEO, DEFO, EFAO,当堂练习,1. 根据下列条件,不能判定一个四边形为平行四边形的是( ),A. 两组对边分别相等,B . 两条对角线互相平分,C . 两条对角线相等,D . 两组对边分别平行,C,C,3.已知:如图,在四边形ABCD中,ABCD,E是BC的中点,直线AE交DC的延长线于点F试判断四边形ABFC的形状,并证明你的结论,ABEFCE(AAS); AE=EF,又BE=CE 四边形ABFC是平行四边形,解:四边形ABFC是平行四边形;理由如下: ABCD,BAE=CFE, E是BC的中点, BE=CE,在ABE和FCE中,,从边考虑,两组对边分别平行的四边形是平行四边形(定义法),两组对边分别相等的四边形是平行四边形(判定定理1),一组对边平行且相等的四边形是平行四边形(判定定理2),从角考虑,从对角线考虑,平行四边形的判定方法,两组对角分别相等的四边形是平行四边形(定义拓展),对角线互相平分的四边形是平行四边形(判定定理3),课堂小结,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020北师大版八数下册 6.2 第2课时 利用四边形对角线的性质判定 精品课件.ppt
    链接地址:https://www.163wenku.com/p-326751.html
    田田田
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库