书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型20春九数下(RJ)第二十六章小结与复习 精品教学课件.ppt

  • 上传人(卖家):田田田
  • 文档编号:326455
  • 上传时间:2020-03-03
  • 格式:PPT
  • 页数:30
  • 大小:709.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《20春九数下(RJ)第二十六章小结与复习 精品教学课件.ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    20春九数下RJ第二十六章小结与复习 精品教学课件 20 春九数下 RJ 第二 十六 小结 复习 精品 教学 课件 下载 _九年级下册_人教版(2024)_数学_初中
    资源描述:

    1、,小结与复习,第二十六章 反比例函数,要点梳理,考点讲练,课堂小结,课后作业,九年级数学下(RJ) 教学课件,1. 反比例函数的概念,要点梳理,定义:形如_ (k为常数,k0) 的函数称为反 比例函数,其中x是自变量,y是x的函数,k是比例 系数 三种表达式方法: 或 xykx 或ykx1 (k0) 防错提醒:(1)k0;(2)自变量x0;(3)函数y0.,2. 反比例函数的图象和性质,(1) 反比例函数的图象:反比例函数 (k0)的 图象是 ,它既是轴对称图形又是中心 对称图形. 反比例函数的两条对称轴为直线 和 ; 对称中心是: .,双曲线,原点,y = x,y=x,(2) 反比例函数的性

    2、质,(3) 反比例函数比例系数 k 的几何意义,k 的几何意义:反比例函数图象上的点 (x,y) 具有 两坐标之积 (xyk) 为常数这一特点,即过双曲线 上任意一点,向两坐标轴作垂线,两条垂线与坐 标轴所围成的矩形的面积为常数 |k|. 规律:过双曲线上任意一点,向两坐标轴作垂线, 一条垂线与坐标轴、原点所围成的三角形的面积 为常数 ,3. 反比例函数的应用,利用待定系数法确定反比例函数:, 根据两变量之间的反比例关系,设 ; 代入图象上一个点的坐标,即 x、y 的一对 对应值,求出 k 的值; 写出解析式.,反比例函数与一次函数的图象的交点的求法,求直线 yk1xb (k10) 和双曲线

    3、(k20)的交点坐标就是解这两个函数解析式组成的方 程组.,利用反比例函数相关知识解决实际问题,过程:分析实际情境建立函数模型明确 数学问题 注意:实际问题中的两个变量往往都只能取 非负值.,考点讲练,1. 下列函数中哪些是正比例函数?哪些是反比例函数?, y = 3x1, y = 2x2, y = 3x,2. 已知点 P(1,3) 在反比例函数 的图象上, 则 k 的值是 ( ) A. 3 B. 3 C. D.,B,3. 若 是反比例函数,则 a 的值为 ( ) A. 1 B. 1 C. 1 D. 任意实数,A,例1 已知点 A(1,y1),B(2,y2),C(3,y3) 都在反比 例函数

    4、的图象上,则y1,y2,y3的大小关系是 ( ) A. y3y1y2 B. y1y2y3 C. y2y1y3 D. y3y2y1,解析:方法分别把各点代入反比例函数求出y1,y2, y3的值,再比较出其大小即可 方法:根据反比例函数的图象和性质比较,D,方法总结:比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定,y1 0y2,已知点 A (x1,y1),B (x2,y2) (x10x2)都在反比例函数 (k0) 的图象上,则 y1 与 y2 的大小关系 (从大到小) 为 .,例2 如图,两个反比例函数 和 在第一象 限

    5、内的图象分别是 C1 和 C2,设点 P 在 C1 上,PA x 轴于点A,交C2于点B,则POB的面积为 .,1,1. 如图,在平面直角坐标系中,点 M 为 x 轴正半轴 上 一点,过点 M 的直线 l y 轴,且直线 l 分别与反比 例函数 (x0)和 (x0) 的图象交于P,Q 两点,若 SPOQ=14, 则 k 的值为 .,20,4,10,2. 如图,已知点 A,B 在双曲线 上,ACx 轴于 点C,BDy 轴于点 D,AC 与 BD 交于点 P,P 是 AC 的中点,若ABP 的面积为6,则 k = .,24,E,F,SABP= S四边形BFCP, = (S四边形BDOFS四边形OC

    6、PD) = (S四边形BDOF S四边形AEOC) = (k k)= k = 6. k =24.,例3 如图,已知 A (4, ),B (1,2) 是一次函数 y =kx+b 与反比例函数 (m0)图象的两个交点,ACx 轴于点 C,BDy 轴于点 D (1) 根据图象直接回答:在第二象限内,当 x 取何值 时,一次函数的值大于反比例函数的值;,解:当4 x 1时,一 次函数的值大于反比例 函数的值.,(2) 求一次函数解析式及 m 的值;,解:把A(4, ),B(1,2)代入 y = kx + b中,得,4k + b = ,,k + b =2,,所以一次函数的解析式为 y = x + .,把

    7、 B (1,2)代入 中,得 m =12=2.,(3) P 是线段 AB 上的一点,连接 PC,PD,若PCA 和 PDB 面积相等,求点 P 坐标.,P, PCA面积和PDB面积相等, ACt(4)= BD2 2( t+ ),,解得:t = . 点 P 的坐标为 ( , ),解:设点 P 的坐标为 ( t, t + ),P点到直线 AC 的 距离为 t(4),P 点到直线 BD 的距离为2 ( t+ ),方法总结:此类一次函数,反比例函数,二元一次方程组,三角形面积等知识的综合运用,其关键是理清解题思路. 在直角坐标系中,求三角形或四边形面积时,是要选取合适的底边和高,正确利用坐标算出线段长

    8、度.,如图,设反比例函数的解析式为 (k0) (1) 若该反比例函数与正比例函数 y =2x 的图象有一个 交点 P 的纵坐标为 2,求 k 的值;,解:由题意知点 P 在正比例函数 y =2x 上, 把 P 的纵坐标 2 带入该解析 式,得P (1,2), 把 P (1,2) 代入 , 得到,P,2,(2) 若该反比例函数与过点 M (2,0) 的直线 l:y=kx +b 的图象交于 A,B 两点,如图所示,当 ABO 的面积为 时,求直线 l 的解析式;,解:把 M (2,0) 代入 y = kx + b, 得 b= 2k,y = kx+2k,,解得 x =3 或 1.,ykx+2k,,

    9、B (3,k),A (1,3k)., ABO的面积为, 23k + 2k =,解得, 直线 l 的解析式为 y = x + ,(3) 在第(2)题的条件下,当 x 取何值时,一次函数的 值小于反比例函数的值?,解:当 x 3或 0x1 时,一次函数的值小于反 比例函数的值.,例4 病人按规定的剂量服用某种药物,测得服药后 2 小时,每毫升血液中的含药量达到最大值为 4 毫克. 已知服药后,2 小时前每毫升血液中的含药量 y (单位:毫克)与时间 x (单位:小时) 成正比例;2 小时后 y 与 x 成反比例 (如图). 根据以上信息解答下列问题: (1) 求当 0 x 2 时,y 与 x 的函

    10、数解析式;,解:当 0 x 2 时,y 与 x 成正比 例函数关系 设 y kx,由于点 (2,4) 在 线段上, 所以 42k,k2,即 y2x.,(2) 求当 x 2 时,y 与 x 的函数解析式;,解:当 x 2时,y 与 x 成反比例函数关系, 设,解得 k 8.,由于点 (2,4) 在反比例函数的图象上, 所以,即,(3) 若每毫升血液中的含药量不低于 2 毫克时治疗有 效,则服药一次,治疗疾病的有效时间是多长?,解:当 0x2 时,含药量不低于 2 毫克,即 2x2, 解得x1,1x2; 当 x2 时,含药量不低于 2 毫克,,即 2,解得 x 4. 2 x 4.,所以服药一次,治

    11、疗疾病的有 效时间是 123 (小时),如图,制作某种食品的同时需将原材料加热,设该材料温度为y,从加热开始计算的时间为x分钟据了解,该材料在加热过程中温度y与时间x成一次函数关系已知该材料在加热前的温度为4,加热一段时间使材料温度达到 28时停止加热,停止加热 后,材料温度逐渐下降,这 时温度y与时间 x 成反比例 函数关系,已知第 12 分钟 时,材料温度是14,(1) 分别求出该材料加热和停止加热过程中 y 与 x 的函 数关系式(写出x的取值范围);,答案:,(2) 根据该食品制作要求,在材料温度不低于 12 的 这段时间内,需要对该材料进行特殊处理,那么 对该材料进行特殊处理的时间为多少分钟?,解:当y =12时,y =4x+4,解得 x=2 由 ,解得x =14. 所以对该材料进行特殊 处理所用的时间为 142=12 (分钟),课堂小结,反比例函数,定义,图象,性质,x,y 的取值范围,增减性,对称性,k 的几何意义,应用,在实际生活中的应用,在物理学科中的应用,见章末练习,课后作业,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:20春九数下(RJ)第二十六章小结与复习 精品教学课件.ppt
    链接地址:https://www.163wenku.com/p-326455.html
    田田田
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库