20春九数下(RJ)26.2 第1课时 实际问题中的反比例函数 精品教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《20春九数下(RJ)26.2 第1课时 实际问题中的反比例函数 精品教学课件.ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20春九数下RJ26.2 第1课时 实际问题中的反比例函数 精品教学课件 20 春九数下 RJ 26.2 课时 实际问题 中的 反比例 函数 精品 教学 课件 下载 _九年级下册_人教版(2024)_数学_初中
- 资源描述:
-
1、,26.2 实际问题与反比例函数,第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 实际问题中的反比例函数,九年级数学下(RJ) 教学课件,学习目标,1. 体会数学与现实生活的紧密联系,增强应用意识, 提高运用代数方法解决问题的能力. 2. 能够通过分析实际问题中变量之间的关系,建立反 比例函数模型解决问题,进一步提高运用函数的图 象、性质的综合能力. (重点、难点) 3. 能够根据实际问题确定自变量的取值范围,导入新课,情境引入,请欣赏成都拉面小哥的“魔性”舞姿,拉面小哥舞姿妖娆,手艺更是精湛. 如果他要把体积为 15 cm3 的面团做成拉面,你能写出面条的总长度 y
2、 (单位:cm) 与面条粗细 (横截面积) S (单位:cm2)的函数关系式吗?,你还能举出我们在日常生活、生产或学习中具有反比例函数关系的量的实例吗?,例1 市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室. (1) 储存室的底面积 S (单位:m2) 与其深度 d (单位:m) 有怎样的函数关系?,讲授新课,解:根据圆柱体的体积公式,得 Sd =104,, S 关于d 的函数解析式为,典例精析,(2) 公司决定把储存室的底面积 S 定为 500 m2,施工队 施工时应该向下掘进多深?,解得 d = 20. 如果把储存室的底面积定为 500 m,施工时应 向地下掘进 20 m
3、深.,解:把 S = 500 代入 ,得,(3) 当施工队按 (2) 中的计划掘进到地下 15 m 时,公 司临时改变计划,把储存室的深度改为 15 m. 相 应地,储存室的底面积应改为多少 (结果保留小 数点后两位)?,解得 S666.67.,当储存室的深度为15 m 时,底面积应改为 666.67 m.,解:根据题意,把 d =15 代入 ,得,第 (2) 问和第 (3) 问与过去所学的解分式方 程和求代数式的值的问题有何联系?,第 (2) 问实际上是已知函数 S 的值,求自变量 d 的取值,第 (3) 问则是与第 (2) 问相反,想一想:,1. 矩形面积为 6,它的长 y 与宽 x 之间
4、的函数关系用 图象可表示为 ( ),B,练一练,A.,x,y,x,y,x,y,x,y,2. 如图,某玻璃器皿制造公司要制造一种容积为1升 (1升1立方分米)的圆锥形漏斗 (1) 漏斗口的面积 S (单位:dm2)与漏斗的深 d (单位: dm) 有怎样的函数关系?,解:,(2) 如果漏斗的深为10 cm,那么漏斗口 的面积为多少 dm2?,解:10cm=1dm,把 d =1 代入解析式,得 S =3. 所以漏斗口的面积为 3 dm2.,(3) 如果漏斗口的面积为 60 cm2,则漏斗的深为多少?,解:60 cm2 = 0.6 dm2,把 S =0.6 代入解析式,得 d =5. 所以漏斗的深为
5、 5 dm.,例2 码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间. (1) 轮船到达目的地后开始卸货,平均卸货速度v (单位: 吨/天)与卸货天数 t 之间有怎样的函数关系?,提示:根据平均装货速度装货天数=货物的总量,可以求出轮船装载货物的总量;再根据平均卸货速度=货物的总量卸货天数,得到 v 关于 t 的函数解析式.,解:设轮船上的货物总量为 k 吨,根据已知条件得 k =308=240, 所以 v 关于 t 的函数解析式为,(2) 由于遇到紧急情况,要求船上的货物不超过 5天卸 载完毕,那么平均每天至少要卸载多少吨?,从结果可以看出,如果全部货物恰好用 5 天卸载 完
展开阅读全文