2019版高考数学一轮复习第九章概率与统计第1讲计数原理与排列组合配套课件(理科).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019版高考数学一轮复习第九章概率与统计第1讲计数原理与排列组合配套课件(理科).ppt》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 一轮 复习 第九 概率 统计 计数 原理 排列组合 配套 课件 理科 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、第九章,概率与统计,第1讲 计数原理与排列组合,1.分类加法原理与分步乘法原理,m1m2mn,(1)分类加法原理:做一件事,完成它有 n 类办法,在第一类办法中有 m1 种不同的方法,在第二类办法中有 m2 种不同的方法,在第 n 类办法中有 mn种不同的方法,那么完成这件事共有 Nm1m2mn 种不同的方法.(2)分步乘法原理:做一件事,完成它要分成 n 个步骤,缺一不可,在第一个步骤中有 m1 种不同的方法,在第二个步骤中有 m2 种不同的方法,在第 n 个步骤中有 mn 种不同的方法,那么完成这件事共有 N_种不同的方法.,2.排列与排列数(1)从 n 个不同元素中取出 m(mn)个元素
2、,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列.(2)从 n 个不同元素中取出 m(mn)个元素的所有不同排列的个数,叫做从 n 个不同元素中取出 m 个元素的排列数,用,n!(nm)!,n!,1,3.组合与组合数(1)从 n 个不同元素中取出 m(mn)个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合.(2)从 n 个不同元素中取出 m(mn)个元素的所有不同组合的个数,叫做从 n 个不同元素中取出 m 个元素的组合数,用,1,1.(2014 年辽宁)6 把椅子摆成一排,3 人随机就座,任何 2,),人不相邻的坐法种数为(A.144 种C.72
3、 种,B.120 种D.24 种,解析:先放 3 把空椅子,剩下 3 人带着椅子插空坐,共有 24(种)不同坐法.,D,2.(2014 年四川)6 个人从左至右排成一行,最左端只能排甲,),B,或乙,最右端不能排甲,则不同的排法共有(A.192 种B.216 种C.240 种D.288 种,3.(2013 年大纲)从进入决赛的 6 名选手中决出 1 名一等奖,2 名二等奖,3 名三等奖,则可能的决赛结果共有_种.(用数,字作答),60,解析:从 6 名选手中决出 1 人得一等奖,2 人得二等奖,34.(2013 年大纲)6 个人排成一行,其中甲、乙两人不相邻的,不同排法共有_种.(用数字作答)
4、,480,解析:先排除去甲、乙的其余 4 人,然后采用插空法,则,考点 1 排列问题,例 1:7 位同学站成一排:(1)共有多少种不同的排法?,(2)站成两排(前 3 后 4),共有多少种不同的排法?(3)其中甲站在中间的位置,共有多少种不同的排法?(4)甲、乙只能站在两端的排法共有多少种?(5)甲、乙不能站在两端的排法共有多少种?(6)甲不排头、乙不排尾的排法共有多少种?(7)甲、乙两同学必须相邻的排法共有多少种?,(8)甲、乙和丙三个同学都相邻的排法共有多少种?,(9)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的,排法有多少种?,(10)甲、乙两同学不能相邻的排法共有多少种?,(11)
5、甲、乙、丙三个同学都不能相邻的排法共有多少种?(12)甲、乙、丙三个同学不都相邻的排法共有多少种?(13)甲、乙相邻且与丙不相邻的排法共有多少种?,(14)甲、乙两同学不能相邻,甲、丙两同学也不能相邻的,排法共有多少种?,(15)甲必须站在乙的左边的不同排法共有多少种?,(9)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的,排法有:,方法一,将甲、乙两同学“捆绑”在一起看成一个元素,,此时一共有 6 个元素,,【规律方法】(1)对有约束条件的排列问题,应注意如下类,型:,某些元素不能在或必须排列在某一位置;某些元素要求连排(即必须相邻);某些元素要求分离(即不能相邻).(2)基本的解题方法:
展开阅读全文