计量经济学第三版第4章课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《计量经济学第三版第4章课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 第三 课件
- 资源描述:
-
1、第四章第四章 多元线性回归模型多元线性回归模型1第1页,共110页。第一节 多元线性回归模型的概念 在许多实际问题中,我们所研究的因变量的变动可能不仅与一个解释变量有关。因此,有必要考虑线性模型的更一般形式,即多元线性回归模型:t=1,2,n 在这个模型中,Y由X1、X2、X3、XK所解释,有K+1个未知参数0、1、2、K。这里,“斜率”j的含义是其它变量不变的情况下其它变量不变的情况下,Xj改变一个单位对因变量所产生的影响。tktktttXXXYu.221102第2页,共110页。例例1 1:其中,Y=在食品上的总支出 X=个人可支配收入 P=食品价格指数 用美国1959-1983年的数据,
2、得到如下回归结果(括号中数字为标准误差):u210PXY)114.0()003.0()6.9(99.0739.0112.07.1162RPXY),(数总消费支出价格平减指食品价格平减指数1001972100PY和X的计量单位为10亿美元(按1972不变价格计算).3第3页,共110页。多元线性回归模型中斜率系数的含义上例中斜率系数的含义说明如下:价格不变的情况下,个人可支配收入每上升10亿美元(1个billion),食品消费支出增加1.12亿元(0.112个 billion)。收入不变的情况下,价格指数每上升一个点,食品消费支出减少7.39亿元(0.739个billion)4第4页,共110页
3、。例例2:其中,Ct=消费,Dt=居民可支配收入 Lt=居民拥有的流动资产水平 2的含义是,在流动资产不变的情况下,可支配收入变动一个单位对消费额的影响。这是收入对消费额的直接影响。收入变动对消费额的总影响=直接影响+间接影响。(间接影响:收入影响流动资产拥有量影响消费额)但在模型中这种间接影响应归因于流动资产,而不是收入,因而,2只包括收入的直接影响。在下面的模型中:这里,是可支配收入对消费额的总影响,显然和2的 含义是不同的。ttttuLDC321ntuDCttt,.,2,1,5第5页,共110页。回到一般模型 t=1,2,,n即对于n组观测值,有tktktttXXXYu.22110nKn
4、KnnnnKKKKuXXXXYuXXXXYuXXXXY.3322110223232221210211313212111016第6页,共110页。其矩阵形式为:其中 nYYYY.21KnnKKXXXXXXX.1.1.11212111uXYnKuuuu.,.212107第7页,共110页。第二节 多元线性回归模型的估计 多元线性回归模型的估计与双变量线性模型类似,仍采用OLS法。当然,计算要复杂得多,通常要借助计算机。理论推导需借助矩阵代数。下面给出普通最小二乘法应用于多元线性回归模型的假设条件、估计结果及所得到的估计量的性质。一一假设条件(1)E(ut)=0,t=1,2,n (2)E(ui uj
5、)=0,ij (3)E(ut2)=2,t=1,2,n (4)Xjt是非随机量,j=1,2,k t=1,2,n 8第8页,共110页。除上面4条外,在多个解释变量的情况下,还有两个条件需要满足:(5)(K+1)n;即观测值的数目要大于待估计的参数的个数 (要有足够数量的数据来拟合回归线)。(6)各解释变量之间不存在严格的线性关系。上述假设条件可用矩阵表示为以下四个条件:9第9页,共110页。A1.E(u)=0 A2.由于 显然,仅当 E(ui uj)=0,ij E(ut2)=2,t=1,2,n 这两个条件成立时才成立,因此,此条件相当前面条件(2),(3)两条,即各期扰动项互不相关,并具有常数方
6、差。22122212121212121.nnnnnnnuuuuuuuuuuuuuuuuuuuuuuunIuuE2)(nIuuE2)(10第10页,共110页。A3.X 是一个非随机元素矩阵。A4.Rank(X)=(K+1)n.-相当于前面(5)、(6)两 条 即矩阵X的秩=(K+1)0,b0)M=a(r-2)b这里,变量非线性和参数非线性并存。对此方程采用对数变换 logM=loga+blog(r-2)令Y=logM,X=log(r-2),1=loga,2=b 则变换后的模型为:Yt=1+2Xt+ut 48第48页,共110页。将OLS法应用于此模型,可求得1和2的估计值 ,从而可通过下列两式
7、求出a和b估计值:应当指出,在这种情况下,线性模型估计量的性质(如BLUE,正态性等)只适用于变换后的参数估计量 ,而不一定适用于原模型参数的估计量 和 。21,112log()(e)aab21和a b49第49页,共110页。例4上例在确定货币需求量的关系式时,我们实际上给模型加进了一个结束条件。根据理论假设,在某一利率水平上,货币需求量在理论上是无穷大。我们假定这个利率水平为2%。假如不给这一约束条件,而是从给定的数据中估计该利率水平的值,则模型变为:M=a(r-c)b 式中a,b,c均为参数。仍采用对数变换,得到 log(Mt)=loga+blog(rt-c)+ut t=1,2,n 我们
8、无法将log(rt-c)定义为一个可观测的变量X,因为这里有一个未知量c。也就是说,此模型无法线性化。在这种情况下,只能用估计非线性模型参数值的方法。50第50页,共110页。四非线性回归 模型 Y=a(X-c)b是一个非线性模型,a、b和c是要估计的参数。此模型无法用取对数的方法线性化,只能用非线性回归技术进行估计,如非线性最小二乘法(NLS)。该方法的原则仍然是残差平方和最小。计量经济软件包通常提供这类方法,这里给出有关非线性回归方法的大致步骤如下:51第51页,共110页。非线性回归方法的步骤1 首先给出各参数的初始估计值(合理猜测值);2 用这些参数值和X观测值数据计算Y的各期预测 值
9、(拟合 值);3计算各期残差,然后计算残差平方和e2;4对一个或多个参数的估计值作微小变动;5计算新的Y预测值 、残差平方和e2;6若新的e2小于老的e2,说明新参数估计值 优于老估计值,则以它们作为新起点;7重复步骤4,5,6,直至无法减小e2为止。8最后的参数估计值即为最小二乘估计值。YY52第52页,共110页。第五节 假设检验一系数的显著性检验1 单个系数显著性检验 目的是检验某个解释变量的系数j是否为0,即该解释变量是否对因变量有影响。原假设 H0:j=0 备择假设 H1:j0 53第53页,共110页。单个系数显著性检验的检验统计量是自由度为 n-k-1 的 t 统计量:t(n-k
10、-1)其中,为矩阵 主对角线上第 j+1个元素。而)()(jjjjVarSet)(jVar21)(XX1122knXYYYknet54第54页,共110页。例:柯布-道格拉斯生产函数 用柯布和道格拉斯最初使用的数据(美国1899-1922年制造业数据)估计经过线性变换的模型得到如下结果(括号内数字为标准误差):)15.0()06.0()43.0(96.0log81.0log23.018.0log2RLKY请检验“斜率”系数和的显著性。logloglogloglogYAKLv55第55页,共110页。解:(1)检验的显著性 原假设 H0:=0 备择假设 H1:0 由回归结果,我们有:t0.23/
11、0.06=3.83用=24321查t表,5%显著性水平下,tc 2.08.t3.83 tc 2.08,故拒绝原假设H0。结论:显著异于0。56第56页,共110页。(2)检验 的显著性 原假设 H0:=0 备择假设 H1:0 由回归结果,我们有:t0.81/0.15=5.4t5.4 tc 2.08,故拒绝原假设H0。结论:显著异于0。57第57页,共110页。2若干个系数的显著性检验(联合假设检验)有时需要同时检验若干个系数是否为0,这可以通过建立单一的原假设来进行。设要检验g个系数是否为0,即与之相对应的g个解释变量对因变量是否有影响。不失一般性,可设原假设和备择假设为:H0:1=2=g=0
12、 H1:H0不成立 (即X1,Xg中某些变量对Y有 影响)58第58页,共110页。分析:这实际上相当于检验g个约束条件 1=0,2=0,g=0 是否同时成立。若H0为真,则正确的模型是:据此进行回归(有约束回归),得到残差平方和 SR是H0为真时的残差平方和。tKtKtggtXXYu.1102110.KtRktgRgRtRXXYS59第59页,共110页。若H1为真,正确的模型即原模型:tKtKttXXYu.110据此进行无约束回归(全回归),得到残差平方和S是H1为真时的残差平方和。2k110.KtttXXYS60第60页,共110页。如果H0为真,则不管X1,Xg这g个变量是否包括在模型
13、中,所得到的结果不会有显著差别,因此应该有:S SR如果H1为真,则由上一节中所讨论的残差平方和e2的特点,无约束回归增加了变量的个数,应有 S SR 通过检验二者差异是否显著地大,就能检验原假设是否成立。61第61页,共110页。所使用的检验统计量是:F(g,n-k-1)其中,g为分子自由度,n-k-1为分母自由度。使用 的作用是消除具体问题中度量单位的影响,使计算出的 F 值是一个与度量单位无关的量。)1(KnSgSSFRSSSR62第62页,共110页。例:给定20组Y,X1,X2,X3的观测值,试检验模型 中X1和X3对Y是否有影响?解:(1)全回归 估计 得到:S=e2=25 (2)
14、有约束回归 估计 得到:SR=e2=30tttttXXXYu3322110tttXYu22063第63页,共110页。原假设 H0:1=3=0 备择假设 H1:H0不成立 我们有:n=20,g=2,k=3 6.1162522530)1(KnSgSSFR用自由度(2,16)查F分布表,5%显著性水平下,F=1.6 FC=3.63,故接受H0。结论:X1和X3对Y无显著影响3.63cF 64第64页,共110页。3全部斜率系数为0的检验 上一段结果的一个特例是所有斜率系数均为0的检验,即回归方程的显著性检验:H0:1=2=K K=0 也就是说,所有解释变量对Y均无影响。注意到 g=K,则该检验的检
15、验统计量为:2)(YYSR)1()()1()(222KneKeYYKnSKSSFR65第65页,共110页。分子分母均除以 ,有2)(YY1)()(12222KnYYeKYYeF)1()1(22KnRKR 从上式不难看出,全部斜率为0的检验实际是检验R2的值是否显著异于0,如果接受原假设,则表明因变量的行为完全归因于随机变化。若拒绝原假设,则表明所选择模型对因变量的行为能够提供某种程度的解释。66第66页,共110页。二二检验其他形式的系数约束条件 上面所介绍的检验若干个系数显著性的方法,也可以应用于检验施加于系数的其他形式的约束条件,如 检验的方法仍是分别进行有约束回归和无约束回归,求出各自
16、的残差平方和 SR 和 S,然后用 F 统计量进行检验。当然,单个系数的假设检验,如 H0:3=1.0,亦可用t检验统计量进行检验。1,11,5.2,0.132434267第67页,共110页。例:Cobb-Douglas生产函数 Y=AKL 试根据美国制造业1899-1922年数据检验规模效益不变的约束:+=1解:(1)全回归 22log0.180.23log0.81log0.96:(0.43)(0.06)(0.15)2520.0710YKLRSeFe68第68页,共110页。(2)有约束回归:将约束条件代入,要回归的模型变为:Y=AKL1-为避免回归系数的不一致问题,两边除以L,模型变换为
17、:Y/L=A(K/L)回归,得:22log(/)0.020.25log(/):(0.02)(0.04)0.6338.00.0716Y LK LSeRFe69第69页,共110页。由回归结果得到的约束回归和全回归的残差平方和分别为 SR=0.0716 S=0.0710 (3)检验 原假设 H0:+1 备择假设 H1:+1 本例中,g=1,K=2,n=24 18.0210710.010710.00716.0)1(KnSgSSFR70第70页,共110页。用自由度(1,21)查F表,5%显著性水平下,Fc=4.32 F=0.18 Fc=4.32 故接受原假设H0:+1 (4)结论 我们的数据支持规模
18、收益不变的假设。71第71页,共110页。第六节 预测 我们用OLS法对多元回归模型的参数进行了估计之后,如果结果理想,则可用估计好的模型进行预测。与双变量模型的作法类似,预测指的是对诸自变量的某一组具体值 来预测与之相对应的因变量值 。当然,要进行预测,有一个假设前提应当满足,即拟合的模型在预测期也成立。).1(02010kXXXC 0Y72第72页,共110页。点预测值由与给定的诸X值对应的回归值给出,即 而预测期的实际Y值由下式给出:其中u0是从预测期的扰动项分布中所取的值。.020210100CXXXYkk00020210100.uCuXXXYkk73第73页,共110页。预测误差可定
19、义为:000YYe)(0Cu0)()()(00ECuEeE0 CY两边取期望值,得因此,OLS预测量是一个无偏预测量。74第74页,共110页。预测误差的方差为:)(1()()()()(1221200CXXCCXXCCVarCuVareVar)()(000eSeeEe)1,0()(110NCXXCe从 e0 的定义可看出,e0 为正态变量的线性函数,因此,它本身也服从正态分布。故75第75页,共110页。由于 为未知,我们用其估计值代替它,有 则 的95%置信区间为:即 )1(2knet)1()(1100kntCXXCYY100.0251()YtCXXC0YCXXCtC1025.0)(176第
展开阅读全文