苏教版高中数学选择性必修一第3章3.2.1第1课时《双曲线的标准方程》课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《苏教版高中数学选择性必修一第3章3.2.1第1课时《双曲线的标准方程》课件.pptx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线的标准方程 苏教版 高中数学 选择性 必修 3.2 课时 双曲线 标准 方程 课件 下载 _选择性必修第一册_苏教版(2019)_数学_高中
- 资源描述:
-
1、苏教版高中数学课件苏教版高中数学课件1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.能利用双曲线的定义和标准方程解决一些实际应用问题.学 习 目 标学 习 目 标前面学习了椭圆及其几何性质,了解了椭圆形状与离心率e有关,在现实生活中还有一类曲线,与椭圆并称为“情侣曲线”,即双曲线,它的形状在现实中很常见.如发电厂的冷却塔的形状,上、下两头粗,中间细,截面图的形状就是本节要学习的双曲线,它的标准方程又如何?人们不禁要问,为什么建成这样的双曲线型冷却塔,而不建成竖直的呢?这就需要我们学习与双曲线相关的内容.导 语导 语随堂演练课时对点练一、双曲线的定义二、
2、双曲线的标准方程三、双曲线在生活中的应用内容索引内容索引一、双曲线的定义一、双曲线的定义问题1如图,在直线l上取两个定点A,B,P是直线l上的动点.在平面内,取定点F1,F2,以点F1为圆心、线段PA为半径作圆,再以F2为圆心、线段PB为半径作圆.我们知道,当点P在线段AB上运动时,如果F1F2AB,那么两圆相交,其交点M的轨迹是椭圆;如果F1F2AB,两圆不相交,不存在交点轨迹.如图,在F1F2AB的条件下,让P点在线段AB外运动,这时动点M满足什么几何条件?提示如题图,曲线上的点满足条件:MF1MF2常数.双曲线定义平面内到两个定点F1,F2的距离之 等于常数(小于F1F2的正数)的点的轨
3、迹叫作 .这两个定点叫作双曲线的 ,两焦点间的距离叫作双曲线的 .知识梳理知识梳理差的绝对值双曲线焦点焦距注意点:注意点:(1)常数要小于两个定点的距离.(2)如果没有绝对值,点的轨迹表示双曲线的一支.(3)当2aF1F2时,动点的轨迹是以F1,F2为端点的两条方向相反的射线(包括端点).(4)当2aF1F2时,动点的轨迹不存在.(5)当2a0时,动点轨迹为线段F1F2的垂直平分线.例1已知A(0,5),B(0,5),PAPB2a,当a3,a5时,P点的轨迹分别为A.双曲线,一条直线B.双曲线,两条直线C.双曲线一支,一条直线D.双曲线一支,一条射线解析 当a3时,2a6,此时AB10,点P的
4、轨迹为双曲线的一支(靠近点B).当a5时,2a10,此时AB10,点P的轨迹为射线,且是以B为端点的一条射线.反思感悟判断点的轨迹是否为双曲线时,要根据双曲线的定义成立的充要条件.跟踪训练1已知F1(6,0),F2(6,0),动点P满足PF1PF210,则P点的轨迹是A.双曲线 B.双曲线的一支C.直线 D.一条射线解析F1,F2是定点,且F1F212,所以满足条件PF1PF210的点P的轨迹应为双曲线的一支.二、双曲线的标准方程二、双曲线的标准方程问题2类比求椭圆标准方程的过程.如何建立适当的坐标系,求出双曲线的标准方程?提示观察我们画出的双曲线,发现它也具有对称性,而且直线F1F2是它的一
5、条对称轴,所以以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系xOy,此时双曲线的焦点分别为F1(c,0),F2(c,0),焦距为2c,c0.设P(x,y)是双曲线上任意一点,则|PF1PF2|2a(a为大于0的常数),类比椭圆标准方程的化简过程,化简,得(c2a2)x2a2y2a2(c2a2),由双曲线的定义知,2c2a,即ca,所以c2a20,类比椭圆标准方程的建立过程,问题3设双曲线的焦点为F1和F2,焦距为2c,而且双曲线上的动点P满足PF1PF22a,其中ca0,以F1,F2所在直线为y轴,线段F1F2的垂直平分线为x轴,建立平面直角坐标系,如图所示,此
6、时,双曲线的标准方程是什么?双曲线的标准方程知识梳理知识梳理焦点位置焦点在x轴上焦点在y轴上图形 标准方程焦点_a,b,c的关系b2_F1(c,0),F2(c,0)F1(0,c),F2(0,c)c2a2注意点:注意点:(1)若x2项的系数为正,则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.(2)a与b没有大小关系.(3)a,b,c的关系满足c2a2b2.例2根据下列条件,求双曲线的标准方程.解得a25或a230(舍去).(2)焦点为(0,6),(0,6),且过点A(5,6).解方法一由已知得c6,且焦点在y轴上.因为点A(5,6)在双曲线上,则a4,b2c2a2624220.解得a21
展开阅读全文