书签 分享 收藏 举报 版权申诉 / 59
上传文档赚钱

类型苏教版高中数学选择性必修一第3章3.2.2第2课时《双曲线几何性质的综合问题》课件.pptx

  • 上传人(卖家):副主任
  • 文档编号:3238718
  • 上传时间:2022-08-10
  • 格式:PPTX
  • 页数:59
  • 大小:2.52MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《苏教版高中数学选择性必修一第3章3.2.2第2课时《双曲线几何性质的综合问题》课件.pptx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    双曲线几何性质的综合问题 苏教版 高中数学 选择性 必修 3.2 课时 双曲线 几何 性质 综合 问题 课件 下载 _选择性必修第一册_苏教版(2019)_数学_高中
    资源描述:

    1、苏教版高中数学课件苏教版高中数学课件上节课我们学习了双曲线的几何性质,熟练掌握双曲线的几何性质是解答双曲线基本问题的法宝,这节课我们将在已有知识的基础上,进一步掌握双曲线的标准方程、几何性质,并运用它们解决有关直线与双曲线的综合问题.导 语导 语一、共渐近线问题一、共渐近线问题反思感悟利用渐近线与双曲线的位置关系,设有公共渐近线的双曲线系方程为 (0),这样可避免分类讨论,从而减少运算量,提高解题速度与准确性.跟踪训练1双曲线顶点间距离为6,渐近线方程为y x.求双曲线的方程.二、双曲线离心率的取值范围二、双曲线离心率的取值范围例2已知点F是双曲线 1的左焦点,点E是该双曲线的右顶点,过F作垂

    2、直于x轴的直线与双曲线交于A,B两点,若ABE是锐角三角形,则该双曲线的离心率e的取值范围是解析若ABE是锐角三角形,则AEF0,所以e2e20,解得1e1,所以1e0,b0)的左、右顶点,若双曲线上存在点M使得两直线斜率 2,则双曲线C的离心率的取值范围是解析设M(x,y),由题意得A1(a,0),A2(a,0),三、双曲线几何性质的综合应用三、双曲线几何性质的综合应用所以可设双曲线的方程为x2y2.因为过点(3,1),所以91,即8,所以双曲线的方程为x2y28.解因为F1(4,0),F2(4,0),因为M点在双曲线上,所以18m28,即m210,求F1MF2的面积.反思感悟(1)解决双曲

    3、线的几何性质问题可用代数法,也可用几何法,综合应用几何性质解题可简化运算.(2)双曲线的几何性质常与平面向量、正、余弦定理、不等式结合.A为左顶点,点P为双曲线C右支上一点,F1F210,解得a3,b4,则A(3,0),1.知识清单:(1)共渐近线求双曲线的方程.(2)求双曲线离心率的取值范围.(3)双曲线几何性质的综合应用.2.方法归纳:化归思想、数形结合法.3.常见误区:焦点所在坐标轴考虑不全.课堂小结课堂小结随堂演练随堂演练12342.已知F是双曲线C:x2 1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则APF的面积为解析由c2a2b24得c2,所以F(2,0),

    4、123412344(c2a2)3c2,e1,1e0,b0)的右焦点,过点F作斜率为3的直线l与双曲线左、右两支均相交,则双曲线离心率的取值范围为由斜率为3的直线l过双曲线的右焦点,且与双曲线左、右两支各有一个交点,12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 166.已知点P为双曲线 1(a0,b0)右支上一点,点F1,F2分别为双曲线的左、右焦点,点I是PF1F2的内心(三角形内切圆的圆心),若恒有 成立,则双曲线的离心率的取值范围是A.(1,2 B.(1,2)C.(0,3 D.(1,312345678910 11 12 13

    5、 14 15 16解析设PF1F2的内切圆半径为r,如图.由双曲线的定义得PF1PF22a,F1F22c.双曲线的离心率的取值范围是(1,3.7.如果双曲线 1右支上总存在到双曲线的中心与到右焦点距离相等的两个相异点,则双曲线离心率的取值范围是_.解析如图,因为OAAF,F(c,0),(2,)因为A在右支上且不在顶点处,12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 168.已知双曲线方程为8kx2ky28(k0),则其渐近线方程为_.解析由已知令8kx2ky20,12345678910 11 12 13 14 15 169.已知

    6、双曲线 1(a0,b0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且PF14PF2,求双曲线的离心率e的最大值.解由双曲线定义知PF1PF22a,又已知PF14PF2,在PF1F2中,由余弦定理得要求e的最大值,即求cosF1PF2的最小值,因为cosF1PF21,12345678910 11 12 13 14 15 16(1)求双曲线的方程;解由双曲线的渐近线方程为y2x,12345678910 11 12 13 14 15 16(2)若直线4xy60与双曲线相交于A,B两点,求AB的值.12345678910 11 12 13 14 15 16解由题意设A(x1,y1),B(x2

    7、,y2),整理得3x212x100,由弦长公式可知,12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 16综合运用11.(多选)双曲线C与椭圆 1有相同的焦距,一条渐近线的方程为x2y0,则双曲线C的标准方程可以为12345678910 11 12 13 14 15 164或4.故选AB.12345678910 11 12 13 14 15 1612.(多选)已知F1,F2分别是双曲线C:x2y21的左、右焦点,P是双曲线上异于双曲线顶点的一点,且 0,则下列结论正确的是A.双曲线C的渐近线方程为yxB.以F1F2为直径的圆的方程为

    8、x2y21C.F1到双曲线的一条渐近线的距离为1D.PF1F2的面积为1解析易得双曲线C的渐近线方程为yx,选项A正确;因此以F1F2为直径的圆的方程为x2y22,选项B错误;12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 16解析不妨设P为双曲线右支上一点,PF1r1,PF2r2.根据双曲线的定义,得r1r22a,又r1r23b,12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 1612345678910 11

    9、 12 13 14 15 16设点P(x,y),x2y2100,即x2y210.拓广探究12345678910 11 12 13 14 15 1615.(多选)已知双曲线两渐近线的夹角为60,则双曲线的离心率为解析方法一由题意知,双曲线的渐近线存在两种情况.当双曲线的焦点在x轴上时,若其中一条渐近线的倾斜角为60,如图1所示;若其中一条渐近线的倾斜角为30,如图2所示.12345678910 11 12 13 14 15 16方法二根据方法一,得当双曲线的焦点在x轴上时,渐近线的倾斜角为30或60,12345678910 11 12 13 14 15 16当双曲线的焦点在y轴上时,渐近线的倾斜角为30或60,12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 1616.如图,已知梯形ABCD中,AB2CD,点E分有向线段 所成的比为,双曲线过C,D,E三点,且以A,B为焦点,当 时,求双曲线离心率e的取值范围.解由题意可知CDy轴.双曲线经过点C,D,且以A,B为焦点,由双曲线的对称性知C,D关于y轴对称.12345678910 11 12 13 14 15 16点C,E在双曲线上,12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 16

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:苏教版高中数学选择性必修一第3章3.2.2第2课时《双曲线几何性质的综合问题》课件.pptx
    链接地址:https://www.163wenku.com/p-3238718.html
    副主任
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库