金融计量学-VAR完整版课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《金融计量学-VAR完整版课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金融 计量学 VAR 完整版 课件
- 资源描述:
-
1、2本章要点 金融计量学的方法论与应用步骤。金融数据的特点和来源 金融计量学软件的使用3第一节第一节 金融计量学的含义及建模步骤金融计量学的含义及建模步骤一、金融计量学的含义 金融计量学就是把计量经济学中的方法和技术应用到金融领域,即应用统计方法和统计技术解决金融问题。4二、金融计量建模的主要步骤 经济理论或金融理论 建立金融计量模型 数据收集 模型估计 模型检验 不通过 通过 重新建立模型 模型的应用5 第一步,把需要研究的金融问题模型化;第二步,收集样本数据;第三步,选择合适的估计方法来估计模型;第四步,对模型进行检验;第五步,对模型进行相应的应用。6三、金融数据的主要类型、特点和来源 1.
2、金融数据的主要类型 时间序列数据(Time series data)是按照一定的时间间隔对某一变量在不同时间的取值进行观测得到的一组数据,例如每天的股票价格、每月的货币供应量、每季度的GDP、每年用于表示通货膨胀率的GDP平减指数等。7 在分析时间序列数据时,应注意以下几点:(1)在利用时间序列数据回归模型时,各变量数据的频率应该是相同的;(2)不同时间的样本点之间的可比性问题;(3)使用时间序列数据回归模型时,往往会导致模型随机误差项产生序列相关;(4)使用时间序列数据回归模型时应特别注意数据序列的平稳性问题。8 横截面数据(Cross-sectional data)是指对变量在某一时点上收
3、集的数据的集合,例如,某一时间点上海证券交易所所有股票的收益率,2004年世界上发展中国家的外汇储备等。平行数据(Panel data)是指多个个体同样变量的时间序列数据按照一定顺序排列得到的集合,例如30家蓝筹股过去3年每日的收盘价。9 2.金融数据的特点 与一般宏观经济数据相比,金融数据在频率、准确性、周期性等方面具有自己特有的性质:(1)金融数据可以更频繁地观察到,可用于计量分析的数据观测值个数可以成千上万,数量十分巨大;(2)金融数据一般都能在交易时准确记录下来;(3)金融数据一般也是不平稳的,但难以区分金融数据序列的随机游走、趋势以及其他的一些特征。103.金融数据的主要来源 政府部
4、门和国际组织的出版物及网站 专业信息数据公司,抽样调查11第二节第二节 金融计量学软件简介金融计量学软件简介 一、金融计量学主要软件简介1.金融计量分析的主要任务 从反映金融问题的大量数据中提取和归纳金融问题的客观规律性,进行解释和预测,为金融政策和金融实践提供依据。为此,必须合理、科学地组织管理大量的数据信息,并用计量经济学或金融计量学的方法对这些数据进行一系列复杂的数值计算处理。122.分类(按操作的互动性与否分为)菜单模式,如Microfit 命令行模式,如Eviews 及介于二者之间的中间模式133.主要计量经济学软件 Eviews软件 GAUSS软件 LIMDEP软件 Mathema
5、tica软件 Matlab软件 Microfit软件 Minitab软件 RATS软件 SAS软件 SHAZMA软件 S-PLUS软件 SPSS软件 STATA软件 TSP软件14二、本课程所用软件Microfit4.0和Eviews3.11.Microfit4.0使用简介以Microfit4.0版本为例。1.数据输入、修改及保存15图1-2 Microfit 4.0主界面16图1-3 数据录入设定界面17图1-4 变量定义、修改窗口18图1-5 数据录入界面192.命令窗口及绘图 图1-6 Microfit 命令窗口20图1-7 19621972年辞职率和失业率线性图21图1-8 19621
6、972年辞职率和失业率散点图 Scatter plot of QUIT on UNEMP QUIT UNEMP 1.01.52.02.53.0345678223.一个回归分析案例 图1-9 Microfit 单方程回归分析窗口23图1-10 最小二乘估计结果及相关统计量24图1-11 四种假设检验的结果25(二)Eviews 3.1使用简介1.数据输入、修改及保存 图1-12 Eviews新工作文件数据设定窗口26图1-13 空白新工作文件27(二)Eviews3.1使用简介 1.数据输入、修改及保存 图1-14 新工作文件数据导入窗口28图1-15 数据导入后工作文件29图1-16 察看数据
7、窗口30图1-17 GDP和M1线性图31图1-18 方程设定窗口32图1-19 回归结果33本章小节本章小节 金融计量学是金融学的一个重要分支,金融问题的数量化研究是金融计量学的目的,包括金融模型的设计、建立、估计、检验及使用模型进行预测和政策策划的系列过程。金融理论的迅速发展、金融模型的不断推出、计算机技术的日益发展和计量软件的多样化都为现代金融的数量化研究提供了有力的工具,这些条件的结合形成了金融计量分析的基础。34 本章简要阐述了金融计量学的方法和一般应用步骤,着重介绍了金融数据的类型和特点,简要评述了主要的计量和统计软件包,对常用的Microfit和Eviews计量软件的使用方法进行
8、了详细讲解并举例说明。本章旨在使学生理解金融计量模型思想,了解金融数据的特点与来源,掌握常用的金融计量软件。35第二章第二章 最小二乘法(最小二乘法(OLS)和线性回归模型和线性回归模型36本章要点 最小二乘法的基本原理和计算方法 经典线性回归模型的基本假定 BLUE统计量的性质 t检验和置信区间检验的原理及步骤 多变量模型的回归系数的F检验 预测的类型及评判预测的标准 好模型具有的特征37第一节第一节 最小二乘法的基本属性最小二乘法的基本属性 一、有关回归的基本介绍 金融、经济变量之间的关系,大体上可以分为两种:(1)函数关系:Y=f(X1,X2,.,XP),其中Y的值是由Xi(i=1,2.
9、p)所唯一确定的。(2)相关关系:Y=f(X1,X2,.,XP),这里Y的值不能由Xi(i=1,2.p)精确的唯一确定。38图2-1 货币供应量和GDP散点图39 图2-1表示的是我国货币供应量M2(y)与经过季节调整的GDP(x)之间的关系(数据为1995年第一季度到2004年第二季度的季度数据)。40 但有时候我们想知道当x变化一单位时,y平均变化多少,可以看到,由于图中所有的点都相对的集中在图中直线周围,因此我们可以以这条直线大致代表x与y之间的关系。如果我们能够确定这条直线,我们就可以用直线的斜率来表示当x变化一单位时y的变化程度,由图中的点确定线的过程就是回归。41 对于变量间的相关
10、关系,我们可以根据大量的统计资料,找出它们在数量变化方面的规律(即“平均”的规律),这种统计规律所揭示的关系就是回归关系(regressive relationship),所表示的数学方程就是回归方程(regression equation)或回归模型(regression model)。42 图2-1中的直线可表示为 (2.1)y=x 根据上式,在确定、的情况下,给定一个x值,我们就能够得到一个确定的y值,然而根据式(2.1)得到的y值与实际的y值存在一个误差(即图2-1中点到直线的距离)。43 如果我们以表示误差,则方程(2.1)变为:y=ux 即:tttuxy其中t(=1,2,3,.,T
11、)表示观测数。(2.2)(2.3)式(2.3)即为一个简单的双变量回归模型(因其仅具有两个变量x,y)的基本形式。44 其中yt被称作因变量(dependent variable)、被解释变量(explained variable)、结果变量(effect variable);xt被称作自变量(independent variable)、解释变量(explanatory variable)、原因变量(causal variable)45、为参数(parameters),或称回归系数(regression coefficients);t通常被称为随机误差项(stochastic error te
12、rm),或随机扰动项(random disturbance term),简称误差项,在回归模型中它是不确定的,服从随机分布(相应的,yt也是不确定的,服从随机分布)。46 为什么将t 包含在模型中?(1)有些变量是观测不到的或者是无法度量的,又或者影响因变量yt的因素太多;(2)在yt的度量过程中会发生偏误,这些偏误在模型中是表示不出来的;(3)外界随机因素对yt的影响也很难模型化,比如:恐怖事件、自然灾害、设备故障等。47 二、参数的最小二乘估计(一)方法介绍 本章所介绍的是普通最小二乘法(ordinary least squares,简记OLS);最小二乘法的基本原则是:最优拟合直线应该使
13、各点到直线的距离的和最小,也可表述为距离的平方和最小。假定根据这一原理得到的、估计值为 、,则直线可表示为 。ttyx48 直线上的yt值,记为 ,称为拟合值(fitted value),实际值与拟合值的差,记为 ,称为残差(residual),可以看作是随机误差项 的估计值。根据OLS的基本原则,使直线与各散点的距离的平方和最小,实际上是使残差平方和(residual sum of squares,简记RSS)最小,即最小化:tytutuT21ttuT21()tttyyT21()tttyx RSS=(2.4)49 根据最小化的一阶条件,将式2.4分别对、求偏导,并令其为零,即可求得结果如下:
14、22xTxxyTyxtttyx(2.5)(2.6)50(二)一些基本概念 1.总体(the population)和样本(the sample)总体是指待研究变量的所有数据集合,可以是有限的,也可以是无限的;而样本是总体的一个子集。2、总体回归方程(the population regression function,简记PRF),样本回归方程(the sample regression function,简记SRF)。51 总体回归方程(PRF)表示变量之间的真实关系,有时也被称为数据生成过程(DGP),PRF中的、值是真实值,方程为:ttxy+tu(2.7)样本回归方程(SRF)是根据所选
15、样本估算的变量之间的关系函数,方程为:注意:SRF中没有误差项,根据这一方程得到的是总体因变量的期望值txy(2.8)52于是方程(2.7)可以写为:(2.9)总体y值被分解为两部分:模型拟合值()和残差项()。y tutttyxu53 3.线性关系 对线性的第一种解释是指:y是x的线性函数,比如,y=。对线性的第二种解释是指:y是参数的一个线性函数,它可以不是变量x的线性函数。比如,y=就是一个线性回归模型,但 则不是。在本课程中,线性回归一词总是对指参数为线性的一种回归(即参数只以一次方出现),对解释变量x则可以是或不是线性的。x2xxy54 有些模型看起来不是线性回归,但经过一些基本代数
16、变换可以转换成线性回归模型。例如,tutteAxy (2.10)可以进行如下变换:tttuxAylnlnln(2.11)令 、,则方程(2.11)变为:ttyYln Aln ttxXlntttuXY(2.12)可以看到,模型2.12即为一线性模型。55 4.估计量(estimator)和估计值(estimate)估计量是指计算系数的方程;而估计值是指估计出来的系数的数值。56 三、最小二乘估计量的性质和分布(一)经典线性回归模型的基本假设(1),即残差具有零均值;(2)var 30),并且要求满足条件:观测值的数目至少是参数的二倍;随机项没有自相关并且服从正态分布。统计假设:零假设 :是同方差
17、(i=1,2,n)备择假设 :具有异方差 0Hi1Hi136 Goldfeld-Quandt检验法涉及对两个最小二乘回归直线的计算,一个回归直线采用我们认为随机项方差较小的数据,另一个采用我们认为随机项方差较大的数据。如果各回归直线残差的方差大致相等,则不能拒绝同方差的原假设,但是如果残差的方差增加很多,就可能拒绝原假设。步骤为:137 第一步,处理观测值。将某个解释变量的观测值按由小到大的顺序排列,然后将居中的d项观测数据除去,其中d的大小可以选择,比如取样本容量的1/4。再将剩余的(n-d)个数据分为数目相等的二组。138 第二步,建立回归方程求残差平方和。拟合两个回归模型,第一个是关于较
18、小x值的那部分数据,第二个是关于较大x值的那部分数据。每一个回归模型都有(n-d)/2个数据以及(n-d)/2-2的自由度。d必须足够小以保证有足够的自由度,从而能够对每一个回归模型进行适当的估计。对每一个回归模型,计算残差平方和:记 值较小的一组子样本的残差平方和为 =,值较大的一组子样本的残差平方和为 =。1RSS21i2RSS22iix139 第三步,建立统计量。用所得出的两个子样本的残差平方和构成F统计量:若零假设为真,则上式中n为样本容量(观测值总数),d为被去掉的观测值数目,k为模型中自变量的个数。22222211/(1)2(1,1)22/(1)2iiiindkndndFFkknd
19、k140 第四步,得出结论。假设随机项服从正态分布(并且不存在序列相关),则统计量 /将服从分子自由度和分母自由度均为()的F分布。对于给定的显著性水平,如果统计量的值大于上述F分布的临界值,我们就拒绝原假设,认为残差具有异方差性。否则,就不能拒绝原假设。2RSS1RSS12ndk141(二)Spearman rank correlation 检验法 首先引入定义Spearman的等级检验系数:其中 表示第i个单元或现象的两种不同特性所处的等级之差,而n表示带有级别的单元或现象的个数。在这里,我们假设模型为:221 6(1)isdrn n id01iiiYXu142 第一步,运用OLS法对原方
20、程进行回归,计算残差 ,i=1,2n。第二步,计算Spearman等级相关系数。将 和解释变量观察值 按从小到大或从大到小的顺序分成等级。等级的大小可以人为规定,一般取大小顺序中的序号。如有两个值相等,则规定这个值的等级取相继等级的算术平均值。然后,计算 与 的等级差 ,的等级 的等级。最后根据公式计算Spearman等级相关系数。iiiyyiiixixixididi143 第三步,对总体等级相关系数 进行显著性检验 :0,:0。样本 的显著性可通过t检验按下述方法加以检验:t 对给定的显著水平 ,查t分布表得 的值,若 ,表明样本数据异方差性显著,否则,认为不存在异方差性。对于多元回归模型,
21、可分别计算 与每个解释变量的等级相关系数,再分别进行上述检验。sss0H1Hsr22(2)1ssrnt nr/2(2)tn/2(2)tnti144(三)Park检验法 Park检验法就是将残差图法公式化,提出 是解释变量 的某个函数,然后通过检验这个函数形式是否显著,来判定是否具有异方差性及其异方差性的函数结构。该方法的主要步骤如下:第一步,建立被解释变量y对所有解释变量x的回归方程,然后计算残差 (i=1,2,n)第二步,取异方差结构的函数形式为 ,其中,和 是两个未知参数,是随机变量。写成对数形式则为:。2i2i2ivix e2iv2lni2lnlniixv2iix145 第三步,建立方差
22、结构回归模型,同时用 来代替 ,即 。对此模型运用OLS法。对 进行t检验,如果不显著,则没有异方差性。否则表明存在异方差。Park检验法的优点是不但能确定有无异方差性,而且还能给出异方差性的具体函数形式。但也有质疑,认为 仍可能有异方差性,因而结果的真实性要受到影响。2i2lni2lnlniixviv2i146(四)Glejser检验法 这种方法类似于Park检验。首先从OLS回归取得残差 之后,用 的绝对值对被认为与 密切相关的X变量作回归。有如下几种函数形式(其中 是误差项):2iii1iiiiiiiiiXvXvvX21iiiiiiiiivXXvXviv147 Glejser检验方法的优
23、点是允许在更大的范围内寻找异方差性的结构函数。缺点是难于确定 的适当的幂次,这往往需要进行大量的计算。从实际方面考虑,该方法可用于大样本,而在小样本中,则仅可作为异方差摸索的一种定性技巧。iX148(五)Breusch-Pagan检验法 该方法的基本思想是构造残差平方序列与解释变量之间的辅助函数,得到回归平方和ESS,从而判断异方差性存在的显著性。设模型为:(3.7)并且 (3.8)在式(3.8)中 表示是某个解释变量或全部。12233tttkkttY201122var()tttppt 12,p 149 提出原假设为 ,具体步骤如下:第一步,用OLS方法估计式(3.7)中的未知参数,得 (3.
24、9)和 (n为样本容量)(3.10)第二步,构造辅助回归函数 (3.11)式中 为随机误差项。012:0p122tttkkteY22ten2011222tttpptte t150 第三步,用OLS方法估计式(3.11)中的未知参数,计算解释的平方和ESS,可以证明当有同方差性,且n无限增大时有 第四步,对于给定显著性水平 ,查 分布表得 ,比较 与 ,如果 ,则拒绝原假设,表明模型中存在异方差。22pESS22()P2()P2ESS2ESS2()P151(六)White检验 White检验的提出避免了Breusch-Pagan检验一定要已知随机误差的方差产生的原因,并且要求随机误差服从正态分布
25、。White检验与Breusch-Pagan检验很相似,但它不需要关于异方差的任何先验知识,只要求在大样本的情况下。下面是White检验的基本步骤:设二元线性回归模型为 (3.12)12233ttttY 152 异方差与解释变量的一般线性关系为 第一步,用OLS法估计式3.3的参数 。第二步,计算残差序列 和 。第三步,求 对 ,的线性回归估计式,即构造辅助回归函数。第四步,计算统计量 ,其中n为样本容量,为辅助回归函数中的决定系数。222012233243523tttttttte te2te2te2t3t22t23t23tt 2nR2R123,153 第五步,在的 原假设下,服从自由度为5的
展开阅读全文