8.5.2 直线与平面平行的性质2课时(解析版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《8.5.2 直线与平面平行的性质2课时(解析版).docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 8.5.2 直线与平面平行的性质2课时解析版 8.5 直线 平面 平行 性质 课时 解析 下载 _其他_数学_高中
- 资源描述:
-
1、 8.5.28.5.2直线与平面平行的性质导学案编写:廖云波 初审:谭光垠 终审:谭光垠 廖云波【学习目标】1.理解线面平行的性质定理,并能应用定理解决有关问题2.会用文字、符号、图形三种语言准确地描述线面平行的性质定理,并能证明一些空间位置关系的简单命题【自主学习】知识点1 文字语言一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言a,a,bab图形语言【合作探究】探究一 线面平行性质定理的理解【例1】下列说法中正确的是()一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;过直线外一点,有且
2、仅有一个平面和已知直线平行;如果直线l和平面平行,那么过平面内一点和直线l平行的直线在内ABCD【答案】D解析根据线面平行的性质定理可知:直线与平面内的无数条直线平行,正确根据线面平行的定义,直线与平面平行,则直线与平面内的任何直线无公共点,正确可以作无数个平面与直线平行,错误根据直线l与平面内一定点可以确定一个平面,则平面与平面的交线与直线l平行,且在平面内,正确,所以选D.归纳总结:【练习1】若直线l平面,则过l作一组平面与相交,记所得的交线分别为a、b、c,那么这些交线的位置关系为()A都平行B都相交且一定交于同一点C都相交但不一定交于同一点D都平行或交于同一点【答案】A解析:因为直线l
3、平面,所以根据直线与平面平行的性质知la,lb,lc,所以abc,故选A.探究二 线面平行性质定理的应用【例2】如图所示,已知两条异面直线AB与CD,平面MNPQ与AB,CD都平行,且点M,N,P,Q依次在线段AC,BC,BD,AD上,求证:四边形MNPQ是平行四边形证明因为AB平面MNPQ,且过AB的平面ABC交平面MNPQ于MN,所以ABMN.又过AB的平面ABD交平面MNPQ于PQ,所以ABPQ,所以MNPQ.同理可证NPMQ.所以四边形MNPQ为平行四边形归纳总结:应用线面平行的性质定理可以得到线线平行.解此类题的关键是找到过已知直线的平面与已知平面的交线,有时为了得到交线需要作出辅助
4、平面.必要时,可反复应用线面平行的判定定理和性质定理进行平行关系的转化【练习2】求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行证明:如图,直线a、l,平面、满足l,a,a.过a作平面交平面于b.a,ab.同样过a作平面交平面于c,a,ac,则bc.又b,c,b.又b,l,bl.又ab,al.课后作业A组 基础题一、选择题1如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH平面SCD,则()AGHSABGHSDCGHSCD以上均有可能【答案】B解析因为GH平面SCD,GH平面SBD,平面SBD平面SCDSD,所以GHSD,显然GH与SA,SC均不平行,
5、故选B.2直线a平面,P,过点P平行于a的直线()A只有一条,不在平面内B有无数条,不一定在内C只有一条,且在平面内D有无数条,一定在内【答案】C解析由线面平行性质定理知过点P平行于a的直线只有一条,且在平面内,故选C.3过平面外的直线l作一组平面与相交,如果所得的交线为a,b,c,则这些交线的位置关系为()A都平行B都相交但不一定交于同一点C都相交且一定交于同一点D都平行或都交于同一点【答案】D解析分l和l与相交两种情况作答,对应的结果是都平行或都交于同一点4如图,四棱锥PABCD中,M,N分别为AC,PC上的点,且MN平面PAD,则()AMNPDBMNPACMNADD以上均有可能【答案】B
6、5已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ平面AA1B1B,则线段PQ的长为()A1 B. C. D.【答案】C解析如图,连接AD1,AB1,PQ平面AA1B1B,平面AB1D1平面AA1B1BAB1,PQ平面AB1D1,PQAB1,PQAB1.6在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD平面EFGH时,下面结论正确的是()AE,F,G,H一定是各边的中点BG,H一定是CD,DA的中点CBEEABFFC,且DHHADGGCDAEEBAHHD,且BFFCDGGC【答案】D解析由于BD平面E
7、FGH,所以有BDEH,BDFG,则AEEBAHHD,且BFFCDGGC.7.如图,四棱锥SABCD的所有的棱长都等于2,E是SA的中点,过C,D,E三点的平面与SB交于点F,则四边形DEFC的周长为()A2 B3C32 D22【答案】C解析CDAB,CD平面SAB,CD平面SAB.又平面CDEF平面SABEF,CDEF,又CDAB,ABEF.SEEA,EF为ABS的中位线,EFAB1,又DECF,四边形DEFC的周长为32.二、填空题8.如图所示,ABCDA1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP,过P,M,N的平面交
展开阅读全文