10.1.2 事件的关系和运算(解析版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《10.1.2 事件的关系和运算(解析版).docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 10.1.2 事件的关系和运算解析版 10.1 事件 关系 运算 解析 下载 _其他_数学_高中
- 资源描述:
-
1、 10.1.2事件的关系和运算导学案编写:廖云波 初审:孙锐 终审:孙锐 廖云波【学习目标】1.了解事件的包含与相等的含义及概率关系2理解事件和(并)、积(交)运算的含义及其概率关系3理解事件的互斥与对立关系,掌握互斥事件的概率加法公式4会进行事件的混合运算【自主学习】知识点1 事件的包含与相等 (1)包含关系一般地,如果事件A_发生_时,事件B一定发生,则称“A包含于B”(或“B包含A”),记作AB(或BA)用图形表示为:(2)相等关系如果事件A发生时,事件B一定发生;而且事件B发生时,事件A也一定发生,则称“_A与B相等_”,记作AB知识点2 和事件与积事件 (1)事件的和(并)给定事件A
2、,B,由_所有_A中的样本点与B中的样本点组成的事件称为A与B的和(或并),记作AB(或AB)事件A与B的和可以用如图中的阴影部分表示(2)事件的积(交)给定事件A,B,由A与B中的_公共样本点_组成的事件称为A与B的积(或交),记作AB(或AB)事件A与事件B的积可以用如图中的阴影部分表示知识点3 事件的互斥与对立给定事件A,B,若事件A与B_不能同时_发生,则称A与B互斥,记作AB(或AB)【合作探究】探究一 事件关系的判断【例1】从40张扑克牌(红桃、黑桃、方块、梅花,点数从110各1张)中,任取一张(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌
3、点数为5的倍数”与“抽出的牌点数大于9”判断上面给出的每对事件是否为互斥事件,是否为对立事件,并说明理由分析要判断两个事件是不是互斥事件,只需要分别找出各个事件包含的所有结果,看它们之间能不能同时发生在互斥的前提下,看两个事件的并事件是否为必然事件,从而可判断是否为对立事件解(1)是互斥事件,不是对立事件理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件(2)既是互斥事件,又是对立事件理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌”
4、,两个事件不可能同时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件(3)不是互斥事件,也不是对立事件理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得牌点数为10,因此,二者不是互斥事件,当然不可能是对立事件归纳总结:(1)利用基本概念互斥事件不可能同时发生;对立事件首先是互斥事件,且一次试验中必有一个要发生(2)利用集合观点设事件A与B所含的结果组成的集合分别是A,B.若事件A与B互斥,则集合AB;若事件A与B对立,则集合AB且AB.【练习1】从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥
5、而不对立的是()A至少有一个红球与都是红球B至少有一个红球与都是白球C至少有一个红球与至少有一个白球D恰有一个红球与恰有两个红球【答案】D解析:根据互斥事件与对立事件的定义判断A中两事件不是互斥事件,事件“三个球都是红球”是两事件的交事件;B中两事件是对立事件;C中两事件能同时发生,如“恰有一个红球和两个白球”,故不是互斥事件;D中两事件是互斥而不对立事件探究二 事件的运算【例2】掷一枚骰子,下列事件:A“出现奇数点”,B“出现偶数点”,C“点数小于3”,D“点数大于2”,E“点数是3倍数”求:(1)AB,BC;(2)AB,BC;(3)记为事件H的对立事件,求,C,C,.分析利用事件间运算的定
6、义列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算【答案】(1)AB,BC2(2)AB1,2,3,4,5,6,BC1,2,4,6(3)1,2;CBC2;CAC1,2,3,5;1,2,4,5归纳总结:进行事件的运算时,一是要紧扣运算的定义;二是要全面考查同一条件下的试验可能出现的全部结果,必要时可利用Venn图或列出全部的试验结果进行分析.【练习2】盒子里有6个红球,4个的白球,现从中任取3个球,设事件A3个球中有1个红球,2个白球,事件B3个球中有2个红球,1个白球,事件C3个球中至少有1个红球,事件E3个红球,那么事件C与A,B,E的运算关系是( )AC(AB)EB
7、CABECC(AB)EDCABE【答案】B解析:由题意可知CABE.课后作业A组 基础题一、选择题1.抛掷一枚骰子,“向上的点数是1或2”为事件A,“向上的点数是2或3”为事件B,则()A.ABB.A=BC.A+B表示向上的点数是1或2或3D.AB表示向上的点数是1或2或3【答案】C解析设A=1,2,B=2,3,则AB=2,AB=1,2,3,所以A+B表示向上的点数为1或2或3,故选C.2从装有3个红球和4个白球的口袋中任取3个小球,则下列选项中的两个事件是互斥事件的为()A“都是红球”与“至少1个红球”B“恰有2个红球”与“至少1个白球”C“至少1个白球”与“至多1个红球”D“2个红球,1个
8、白球”与“2个白球,1个红球”【答案】DA,B,C中两个事件是包含与被包含关系,只有D,两个事件不可能同时发生,是互斥事件3抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为()A至多有2件次品B至多有1件次品C至多有2件正品D至少有2件正品【答案】B至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品4给出以下三个命题:(1)将一枚硬币抛掷两次,记事件A:“两次都出现正面”,事件B:“两次都出现反面”,则事件A与事件B是对立事件;(2)在命题(1)中,事件A与事件B是互斥事件;(3)在10件产品中有3件是次品
9、,从中任取3件,记事件A:“所取3件中最多有2件是次品”,事件B:“所取3件中至少有2件是次品”,则事件A与事件B是互斥事件其中命题正确的个数是()A0B1C2D3【答案】B(1)还有可能出现一次出现正面,一次出现反面这种情况,所以事件A和B是互斥事件,但不是对立事件,所以(1)错误;(2)正确;(3)中可能出现2件次品,1件正品的情况,所以事件A与事件B不是互斥事件故选B5如果事件A,B互斥,那么()AAB是必然事件 B是必然事件C与一定互斥 D与一定不互斥【答案】B用集合的表示法中的“Venn图”解决比较直观,如图所示,I是必然事件,故选B6(多选题)对空中飞行的飞机连续射击两次,每次发射
10、一枚炮弹,设事件A两弹都击中飞机,事件B两弹都没击中飞机,事件C恰有一弹击中飞机,事件D至少有一弹击中飞机,下列关系正确的是()AADBBDCACDDACBD【答案】ABC“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,ACBD二、填空题7事件“某人从装有5个黑球,5个白球的袋中任取5个小球,其中至少4个是黑球”的对立事件是_【答案】某人从装有5个黑球,5个白球的袋中任取5个小球,其中至多3个是黑球事件“某人从装有5个黑球,5个白球的袋中任取5个小球,其中至少4个是黑球”的对立事件是“某人从装有5个黑球,5
展开阅读全文