10.1.3 古典概型(解析版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《10.1.3 古典概型(解析版).docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 10.1.3 古典概型解析版 10.1 古典 解析 下载 _其他_数学_高中
- 资源描述:
-
1、 10.1.3古典概型导学案编写:廖云波 初审:孙锐 终审:孙锐 廖云波【学习目标】1.理解古典概型及其概率计算公式2.会用列举法计算一些随机事件所含的样本点个数及事件发生的概率3.掌握利用概率的性质求古典概型的概率的方法【自主学习】知识点1 古典概型的特点有限性:试验的样本空间的样本点只有有限个;等可能性:每个样本点发生的可能性相等知识点2 古典概型的概率公式对任何事件A,P(A) 【合作探究】探究一 古典概型的判断【例1】判断下列试验是不是古典概型:(1)口袋中有2个红球、2个白球,每次从中任取1球,观察颜色后放回,直到取出红球;(2)从甲、乙、丙、丁、戊5名同学中任意抽取1名担任学生代表
2、;(3)射击运动员向一靶子射击5次,脱靶的次数分析运用古典概型的两个特征逐个判断即可解(1)每次摸出1个球后,仍放回袋中,再摸1个球显然,这是有放回抽样,依次摸出的球可以重复,且摸球可无限地进行下去,即所有可能结果有无限个,因此该试验不是古典概型(2)从5名同学中任意抽取1名,有5种等可能发生的结果:抽到学生甲,抽到学生乙,抽到学生丙,抽到学生丁,抽到学生戊因此该试验是古典概型(3)射击的结果:脱靶0次,脱靶1次,脱靶2次,脱靶5次这都是样本点,但不是等可能事件因此该试验不是古典概型归纳总结:1.古典概型的判断方法:一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征,即有限性和等可
3、能性,因而并不是所有的试验都是古典概型.2.下列三类试验都不是古典概型:(1)样本点个数有限,但不等可能;(2)样本点个数无限,但等可能;(3)样本点个数无限,也不等可能.【练习1】下列试验中是古典概型的是()A在适宜的条件下,种下一粒种子,观察它是否发芽B口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C向一个圆面内随机地投一个点,观察该点落在圆内的位置D射击运动员向一靶心进行射击,试验结果为命中10环,命中9环,命中0环【答案】B解析:由古典概型的两个特征易知B正确探究二 简单的古典概型的问题【例2】有编号为A1,A2,A10的10个零件,测量其直径(单位:cm),得到下
4、面数据:编号A1A2A3A4A5A6A7A8A9A10直径1.511.491.491.511.491.511.471.461.531.47其中直径在区间1.48,1.52内的零件为一等品(1)从上述10个零件中,随机抽取1个,求这个零件为一等品的概率;(2)从这些一等品中,随机抽取2个零件,用零件的编号列出样本空间;求这2个零件直径相等的概率分析首先,阅读题目,收集题目中的各种信息;其次,判断事件是否为等可能事件,并用字母A表示所求事件;再次,求出事件的样本空间包含的样本点个数n及事件A包含的样本点个数m;最后,利用公式P(A),求出事件A的概率解(1)由题表知一等品共有6个,设“从10个零件
5、中,随机抽取1个为一等品”为事件A,则P(A).(2)一等品的编号为A1,A2,A3,A4,A5,A6,从这6个一等品中随机抽取2个,样本空间(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15个样本点将“从一等品中,随机抽取的2个零件直径相等”记为事件B,则B包含的样本点有(A1,A4),(A1,A6),(A4,A6),(A2,A3),(A2,A5),(A3,A5),共6个,P(B).归纳总结:根据古
6、典概型概率公式P(A)进行解题【练习2】将一枚质地均匀的正方体骰子先后抛掷两次观察出现点数的情况(1)一共有多少个不同的样本点?(2)点数之和为5的样本点有多少个?(3)点数之和为5的概率是多少?【答案】(1)36(个) (2)4 (3)解:(1)将一枚质地均匀的正方体骰子抛掷一次,得到的点数有1,2,3,4,5,6,共6个样本点,故先后将这枚骰子抛掷两次,一共有6636(个)不同的样本点(2)点数之和为5的样本点有(1,4),(2,3),(3,2),(4,1),共4个(3)正方体骰子是质地均匀的,将它先后抛掷两次所得的36个样本点是等可能出现的,其中点数之和为5(记为事件A)的样本点有4个,
7、因此所求概率P(A).探究三 较复杂的古典概型问题【例3】在一次口试中,考生要从5道题中随机抽取3道进行回答,答对其中2道题为优秀,答对其中1道题为及格,某考生能答对5道题中的2道题,试求:(1)他获得优秀的概率为多少;(2)他获得及格及及格以上的概率为多少分析这是一道古典概率问题,须用列举法列出样本点个数解设这5道题的题号分别为1,2,3,4,5,其中,该考生能答对的题的题号为4,5,则从这5道题中任取3道回答,该试验的样本空间(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10
8、个样本点(1)记“获得优秀”为事件A,则随机事件A中包含的样本点个数为3,故P(A).(2)记“获得及格及及格以上”为事件B,则随机事件B中包含的样本点个数为9,故P(B).归纳总结:解决有序和无序问题应注意两点(1)关于不放回抽样,计算样本点个数时,既可以看作是有顺序的,也可以看作是无顺序的,其最后结果是一致的.但不论选择哪一种方式,观察的角度必须一致,否则会产生错误.(2)关于有放回抽样,应注意在连续取出两次的过程中,因为先后顺序不同,所以(a1,b),(b,a1)不是同一个样本点.【练习3】甲、乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次
9、(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率解:(1)甲有6种不同的结果,乙也有6种不同的结果,故样本点总数为6636(个)其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定故共有616(种)不同的结果,即概率为.(2)两个玩具的数字之和共有2,3,4,5,6,7,8,9,10,11,12共11种不同结果出现数字之和为12的只有一种情况,故其概率为
10、.出现数字之和为6的共有(1,5),(2,4),(3,3),(4,2),(5,1)五种情况,所以其概率为.课后作业A组 基础题一、选择题1一部三册的小说,任意排放在书架的同一层上,则第一册和第二册相邻的概率为()A BCD【答案】C试验的样本空间 (1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),共6个样本点,事件“第一册和第二册相邻”包含4个样本点,故第一册和第二册相邻的概率为P.2从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则ba的概率是()A B C D【答案】D设所取的数中ba为事件A,如果把选出的数a,b写
11、成一数对(a,b)的形式,则试验的样本空间(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15个,事件A包含的样本点有(1,2),(1,3),(2,3),共3个,因此所求的概率P(A).3从甲、乙、丙、丁、戊五个人中选取三人参加演讲比赛,则甲、乙都当选的概率为()A B C D【答案】C从五个人中选取三人,则试验的样本空间 (甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊
12、),(丙,丁,戊),而甲、乙都当选的结果有3种,故所求的概率为.4易经是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、離、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为()A B C D【答案】C从八卦中任取一卦,基本事件总数n8,这一卦的三根线中恰有2根阳线和1根阴线包含的基本事件个数m3,所求概率为P.故选C5投掷一枚质地均匀的骰子两次,若第一次向上的点数小于第二次向上的点数,则我们称其为正试验;若第二次向上的点数小于第一次向上的点数,则我们称其为负试验;若两次向上的点数相等,则我们称其为无效
13、试验则一个人投掷该骰子两次出现无效试验的概率是()A B C D【答案】C连续抛一枚骰子两次向上的点数记为(x,y),则有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个基本事件,设“出现无效试验”为事件A
14、,则事件A包含(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个基本事件,则P(A).6一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )A. B.C. D.【答案】A解析:把红球标记为红1、红2,白球标记为白1、白2,本试验的样本点共有16个,其中2个球同色的样本点有8个:(红1,红1),(红1,红2),(红2,红1),(红2,红2),(白1,白1),(白1,白2),(白2,白1),(白2,白2),故所求概率为P.7甲、乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组(
展开阅读全文