广东省深圳市2022届高三二模数学试题(2022届高三数学优质模拟试题).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《广东省深圳市2022届高三二模数学试题(2022届高三数学优质模拟试题).docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学优质模拟试题 广东省 深圳市 2022 届高三二模 数学试题 届高三 数学 优质 模拟 试题 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、广东省深圳市2022届高三二模数学试题学校:_姓名:_班级:_考号:_一、单选题1已知集合,则()ABCD2已知复数z满足,其中i为虚数单位,则()A3B4C5D63己知点,向量,则向量()ABCD4深圳是一座志愿者之城、爱心之城深圳市卫健委为了解防疫期间志愿者的服务时长(单位:小时),对参加过防疫的志愿者随机抽样调查,将样本中个体的服务时长进行整理,得到如图所示的频率分布直方图据此估计,7.2万名参加过防疫的志愿者中服务时长超过32小时的约有()A3.3万人B3.4万人C3.8万人D3.9万人5已知一个球的表面积在数值上是它的体积的倍,则这个球的半径是()A2BC3D6若是函数图象的对称轴,
2、则的最小正周期的最大值是()ABCD7已知,若过点可以作曲线的三条切线,则()ABCD8过抛物线的焦点F作直线l,交抛物线于A,B两点,若,则直线l的倾斜角等于()A或B或C或D与p值有关二、多选题9如图,在正方体中,E为的中点,则下列条件中,能使直线平面的有()AF为的中点BF为的中点CF为的中点DF为的中点10已知随机变量X服从正态分布,密度函数,若,则()ABC在上是增函数D11已知,则()ABCD12P是直线上的一个动点,过点P作圆的两条切线,A,B为切点,则()A弦长的最小值为B存在点P,使得C直线经过一个定点D线段的中点在一个定圆上三、填空题13已知,则_14设,则的最小值为_.1
3、5已知函数是偶函数,则_四、双空题16祖暅是我国南北朝时期伟大的科学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果裁得的两个截面的面积总相等,那么这两个几何体的体积相等”现已知直线与双曲线及其渐近线围成的平面图形G如图所示,若将图形G被直线所截得的两条线段绕y轴旋转一周,则形成的旋转面的面积_;若将图形G绕y轴旋转一周,则形成的旋转体的体积_五、解答题17已知数列的前n项和(1)求数列的通项公式;(2)若,求满足条件的最大整数n18记的内角A,B,C的对边分别为a,b,c,已知(1)证明:;(2)当时,
4、求的面积S19如图,在四棱锥中,底面为正方形,侧面是正三角形,M是侧棱的中点,且平面(1)求证:平面平面;(2)求与平面所成角的正弦值202022年北京冬奥会后,由一名高山滑雪运动员甲组成的专业队,与两名高山滑雪爱好者乙、丙组成的业余队进行友谊赛约定赛制如下:业余队中的两名队员轮流与甲进行比赛,若甲连续赢两场则专业队获胜;若甲连续输两场则业余队获胜:若比赛三场还没有决出胜负,则视为平局,比赛结束已知各场比赛相互独立,每场比赛都分出胜负,且甲与乙比赛,乙赢概率为;甲与丙比赛,丙赢的概率为p,其中(1)若第一场比赛,业余队可以安排乙与甲进行比赛,也可以安排丙与甲进行比赛请分别计算两种安排下业余队获
5、胜的概率;若以获胜概率大为最优决策,问:业余队第一场应该安排乙还是丙与甲进行比赛?(2)为了激励专业队和业余队,赛事组织规定:比赛结束时,胜队获奖金3万元,负队获奖金1.5万元;若平局,两队各获奖金1.8万元在比赛前,已知业余队采用了(1)中的最优决策与甲进行比赛,设赛事组织预备支付的奖金金额共计X万元,求X的数学期望的取值范围21已知椭圆经过点,且焦距,线段分别是它的长轴和短轴(1)求椭圆E的方程;(2)若是平面上的动点,从下面两个条件中选一个,证明:直线经过定点,直线与椭圆E的另一交点分别为P,Q;,直线与椭圆E的另一交点分别为P,Q22设函数,其中(1)讨论的单调性;(2)当存在小于零的
6、极小值时,若,且,证明:参考答案:1C【解析】【分析】求出集合,由并集的定义即可求出答案.【详解】因为,则.故选:C.2C【解析】【分析】先利用复数的除法化简复数,再利用复数的模公式求解.【详解】解:因为复数z满足,所以,则,故选:C3D【解析】【分析】由向量的减法和向量的坐标运算即可求出答案.【详解】设,所以 ,整理得:,所以.故选:D.4A【解析】【分析】由频率分布直方图求出样本中服务时长超过小时的个体频率,即可估计人数;【详解】解:依题意样本中服务时长超过小时的个体频率为;由样本估计总体,可得总体中服务时长超过小时的个体数为(万人);故选:A5D【解析】【分析】根据球的表面积公式和体积公
7、式,列出方程求解即可【详解】设球的半径为,则根据球的表面积公式和体积公式,可得,化简得.故选:D6A【解析】【分析】根据余弦函数的性质计算可得;【详解】解:依题意,解得,因为,所以且,所以的最小正周期,所以当时;故选:A7B【解析】【分析】设切点为,切线方程为,求出函数的导函数,即可得到,整理得,令,利用导数说明函数的单调性,即可求出函数的极值,依题意有三个零点,即可得到不等式组,从而得解;【详解】解:设切点为,切线方程为,由,所以,所以,则,所以,令,则,因为,所以当或时,当时,所以在和上单调递增,在上单调递减,所以当时取得极大值,当时取得极小值,即,依题意有三个零点,所以且,即;故选:B8
8、C【解析】【分析】根据题意画出图形,根据抛物线的定义和相似三角形列出比例式,再利用直角三角形的边角关系求出直线的倾斜角.【详解】如图所示,由抛物线的焦点为,准线方程为,分别过A,B作准线的垂线,垂足为,直线l交准线于,如图所示:则,所以,所以,即直线l的倾斜角等于,同理可得直线l的倾斜角为钝角时即为,故选:C9ACD【解析】【分析】取棱的中点,说明与共面,证明平面平面,即可得【详解】如图,分别是棱的中点,易证与共面,由,平面,平面,则平面,同理平面,而是平面内相交直线,则得平面平面,平面,则平面,观察各选项,ACD满足,故选:ACD10ACD【解析】【分析】根据正态曲线的性质,再结合正态分布的
展开阅读全文