3.1.2 椭圆的简单几何性质(1) 导学案-人教A版高中数学选择性必修第一册.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《3.1.2 椭圆的简单几何性质(1) 导学案-人教A版高中数学选择性必修第一册.docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.1.2 椭圆的简单几何性质1 导学案-人教A版高中数学选择性必修第一册 3.1 椭圆 简单 几何 性质 导学案 人教 高中数学 选择性 必修 一册 下载 _必修第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、3.1.2椭圆的简单几何性质(1) 导学案 1.根据椭圆的方程研究椭圆的几何性质,并正确地画出它的图形2根据几何条件求出椭圆的方程重点:由几何条件求出椭圆的方程 难点:由椭圆的方程研究椭圆的几何性质椭圆的几何性质 焦点的位置焦点在x轴上焦点在y轴上图形标准方程焦点的位置焦点在x轴上焦点在y轴上范围-axa且-byb-bxb且-aya顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长 长轴长为2a,短轴长为2b焦点 F1(-c,0),F2(c,0) F1(0,-c),F2(0,c)焦距 2c对称性对称轴:x
2、轴、y轴,对称中心:坐标原点离心率1.判断 (1)椭圆x2a2+y2b2=1(ab0)的长轴长是a.()(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x225+y216=1.()(3)设F为椭圆x2a2+y2b2=1(ab0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距).()2.已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A.13B.12C.22D.223一、 情境导学 与利用直线的方程、圆的方程研究它们的几何性质一样,我们利用椭圆的标准方程研究椭圆的几何性质,包括椭圆的范围、形状、大小、对称性和特殊点等。
3、观察椭圆x2a2+y2b2=1( ab0 )的形状,你能从图上看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?思考 观察图,我们发现,不同椭圆的扁平程度不同,扁平程度是椭圆的重要形状特征,你能用适当的量定量刻画椭圆的扁平程度吗?思考1. 离心率对椭圆扁圆程度的影响?提示:如图所示,在RtBF2O中,cosBF2O=ca,记e=ca,则0e0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率.例2 椭圆x2a2+y2b2=1(ab0)的两焦点为F1,F2,以F1F2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为.典例解析变式1 若例2改为如下:椭圆x2a2+y2b2=1
4、(ab0)的两焦点F1,F2,以F1F2为底边作等腰直角三角形,其三角形顶点恰好落在椭圆的顶点处,则椭圆的离心率为.例3 已知椭圆x2a2+y2b2=1(ab0),F1,F2分别是椭圆的左、右焦点,椭圆上总存在点P使得PF1PF2,则椭圆的离心率的取值范围为. 求椭圆离心率的值或取值范围的常用方法(3)方程法:若a,c的值不可求,则可根据条件建立关于a,b,c的关系式,借助于a2=b2+c2,转化为关于a,c的齐次方程(或不等式),再将方程(或不等式)两边同除以a的最高次幂,得到关于e的方程(或不等式),即可求得e的值(或取值范围).(1)直接法:若已知a,c,可直接利用e=ca求解.若已知a
5、,b(或b,c)可借助于a2=b2+c2求出c(或a),再代入公式e=ca求解.(2)几何法:若借助数形结合,可挖掘涉及几何图形的性质,再借助a2=b2+c2,找到a与c的关系或求出a与c,代入e=ca即可得到.跟踪训练2 (1)已知椭圆x2a2+y2b2=1(ab0)过点(1,2),其离心率的取值范围是12,32,则椭圆短轴长的最大值是()A.4B.3C.11D.23(2)设F1,F2分别是椭圆E:x2a2+y2b2=1(ab0)的左、右焦点,P为直线x=3a2上一点,F2PF1是底角为30的等腰三角形,则E的离心率为. (3)已知椭圆C:x2a2+y2b2=1(ab0)的左、右焦点分别为F
展开阅读全文