1.4.1 用空间向量研究直线、平面的位置关系(2)导学案-人教A版高中数学选择性必修第一册.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《1.4.1 用空间向量研究直线、平面的位置关系(2)导学案-人教A版高中数学选择性必修第一册.docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.4.1 用空间向量研究直线、平面的位置关系2导学案-人教A版高中数学选择性必修第一册 1.4 空间 向量 研究 直线 平面 位置 关系 导学案 人教 高中数学 选择性 必修 一册 下载 _必修第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、1.4.1 用空间向量研究直线、平面的位置关系(2) 1.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.(数学抽象)2.能用向量方法证明必修内容中有关直线、平面垂直关系的判定定理.(逻辑推理)3.能用向量方法证明空间中直线、平面的垂直关系.(逻辑推理)重点:用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系 难点:用向量方法证明空间中直线、平面的垂直关系 一、自主导学空间中直线、平面垂直的向量表示 位置关系向量表示线线垂直设直线l1,l2的方向向量分别为1,2,则l1l21212=0线面垂直设直线l的方向向量为,平面的法向量为n,则lnR,使得=n面面垂直设平面,的法向
2、量分别为n1,n2,则n1n2n1n2=0二、小试牛刀1.判断下列说法是否正确,正确的在后面的括号内打“”,错误的打“”.(1)若两条直线的方向向量的数量积为0,则这两条直线一定垂直相交.()(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.()(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.()(4)若两平面,的法向量分别为u1=(1,0,1),u2=(0,2,0),则平面,互相垂直.()2.设平面的法向量为(1,2,-2),平面的法向量(-2,-4,k),若,则k=()A.2 B.-5 C.4 D.-2一、情境导学类似
3、空间中直线、平面平行的向量表示,在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?二、典例解析例1.如图,在四棱锥P-ABCD中,PA平面ABCD,四边形ABCD是矩形,PA=AB=1,点F是PB的中点,点E在边BC上移动.求证:无论点E在边BC上的何处,都有PEAF.延伸探究本例条件不变,求证:AFBC. 利用向量方法证明线线垂直的方法(1)坐标法:建立空间直角坐标系,写出相关点的坐标,求出两直线方向向量的坐标,然后通过数量积的坐标运算法则证明数量积等于0,从而证明两条直线的方向向量互相垂直;(2)基向量法:利用空间向量的加法、减法、数乘运算及其运
4、算律,结合图形,将两直线所在的向量用基向量表示,然后根据数量积的运算律证明两直线所在的向量的数量积等于0,从而证明两条直线的方向向量互相垂直.跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1AC;(2)BD1EB1.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M平面EFB1. 利用空间向量证明线面垂直的方法(1)基向量法:选取基向量,用基向量表示直线所在的向量,在平面内找出两个不共线的向量,也用基向量表示,然后根据数量积运算律分别证明直线所在向量与两个不共线向量的数量积均为零,从而证得结论.(2)坐
5、标法:建立空间直角坐标系,求出直线方向向量的坐标以及平面内两个不共线向量的坐标,然后根据数量积的坐标运算法则证明直线的方向向量与两个不共线向量的数量积均为零,从而证得结论.(3)法向量法:建立空间直角坐标系,求出直线方向向量的坐标以及平面法向量的坐标,然后说明直线方向向量与平面法向量共线,从而证得结论.跟踪训练2如图,在四棱锥P-ABCD中,ABCD,ABAD,AB=4 ,CD=2, AD=22,PA平面ABCD,PA=4.求证:BD平面PAC. 例3如图所示,在直三棱柱ABC-A1B1C1中,ABBC,AB=BC=2,BB1=1,点E为BB1的中点,证明:平面AEC1平面AA1C1C.利用空
6、间向量证明面面垂直的方法1.利用空间向量证明面面垂直通常有两个途径:一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直.2.向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系,恰当建系或用基向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度.跟踪训练3如图,在五面体ABCDEF中,FA平面ABCD,ADBCFE,ABAD,M为EC的中点,AF=AB=BC=FE=12AD求证:平面AMD平面CDE.金题典例 如图,在直三棱柱ABC-A1B1C1中,底面是以ABC为直角的
7、等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,E是B1C的中点.(1)求cos.(2)在线段AA1上是否存在点F,使CF平面B1DF?若存在,求出|AF|;若不存在,请说明理由. 应用空间向量解答探索性(存在性)问题立体几何中的存在探究题,解决思路一般有两个:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论;(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.1.若直线l的方向向量为a=(1,-2,3),平面的
8、法向量为n=(-3,6,-9),则()A.l B.l C.l D.l与相交2.在正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,则()A.平面AED平面A1FD1B.平面AED平面A1FD1C.平面AED与平面A1FD1相交但不垂直D.以上都不对3.若直线l的方向向量是a=(1,0,-2),平面的法向量是b=(-1,0,2),则直线l与的位置关系是.4.如图,在四面体ABCD中,AB平面BCD,BC=CD,BCD=90,ADB=30,E,F分别是AC,AD的中点,求证:平面BEF平面ABC.5如图所示,在长方体中,、分别是、的中点(1)求证:平面;(2)求证:平面参考答案:
9、知识梳理二、小试牛刀1.答案: (1)(2)(3)(4) 2. 答案:B 解析:因为,所以-2-8-2k=0,解得k=-5. 学习过程例1思路分析只需证明直线PE与AF的方向向量互相垂直即可. 证明:(方法1)以A为原点,以AD,AB,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设AD=a,则A(0,0,0),P(0,0,1),B(0,1,0),C(a,1,0),于是F0,12,12.E在BC上,设E(m,1,0),PE=(m,1,-1), AF=0,12,12.PEAF=0,PEAF.无论点E在边BC上何处,总有PEAF.(方法2)因为点E在边BC上,可设BE=BC,于是PEAF=
展开阅读全文
链接地址:https://www.163wenku.com/p-3217254.html