书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型2.5.2 圆与圆的位置关系 导学案-人教A版高中数学选择性必修第一册.docx

  • 上传人(卖家):四川三人行教育
  • 文档编号:3217231
  • 上传时间:2022-08-07
  • 格式:DOCX
  • 页数:9
  • 大小:601.99KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2.5.2 圆与圆的位置关系 导学案-人教A版高中数学选择性必修第一册.docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2.5.2 圆与圆的位置关系 导学案-人教A版高中数学选择性必修第一册 2.5 位置 关系 导学案 人教 高中数学 选择性 必修 一册 下载 _必修第一册_人教A版(2019)_数学_高中
    资源描述:

    1、2.5.2 圆与圆的位置关系(导学案) 1.掌握圆与圆的位置关系及判定方法.2.能根据圆的方程判断圆与圆的位置关系.3.能综合应用圆与圆的位置关系解决问题.重点:圆与圆的位置关系及判定方法 难点:综合应用圆与圆的位置关系解决问题 圆与圆的位置关系的判定方法1.几何法:圆O1:(x-x1)2+(y-y1)2=r12(r10),圆O2:(x-x2)2+(y-y2)2=r22(r20),两圆的圆心距d=|O1O2|=(x1-x2)2+(y1-y2)2,则有位置关系外离外切相交内切内含图示d与r1,r2的关系dr1+r2d=r1+r2|r1-r2|dr1+r2d=|r1-r2|d0),圆O2:x2+y

    2、2+D2x+E2y+F2=0(D22+E22-4F20),两圆的方程联立得方程组,则有方程组解的情况2组1组0组两圆的公共点2个1个0个两圆的位置关系相交外切或内切外离或内含小试牛刀1. 判断下列两圆的位置关系:(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16.x2+y2+6x-7=0与x2+y2+6y-27=0.一、 情境导学日食是一种天文现象,在民间称此现象为天狗食日。日食只在月球与太阳呈现合的状态时发生。日食分为日偏食、日全食、日环食、全环食。 我们将月亮与太阳抽象为圆,观察到的这些圆在变化的过程中位置关系是怎样的? 前面我们运用直线的方程,圆的方程研究了直线与圆的位置关

    3、系,现在我们类比上述研究方法,运用圆的方程,通过定量计算研究圆与圆的位置关系。二、典例解析例1 已知圆C1:x2+y2-2ax-2y+a2-15=0(a0),圆C2:x2+y2-4ax-2y+4a2=0(a0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切; (2)相交; (3)外离; (4)内含?判断两圆的位置关系的两种方法(1)几何法:利用两圆半径的和或差与圆心距作比较,得到两圆的位置关系;(2)代数法:把两圆位置关系的判定完全转化为代数问题,转化为方程组的解的组数问题.跟踪训练1 若两圆x2+y2=a与x2+y2+6x-8y-11=0内切,则a的值为.例2已知圆C1:x2+y2

    4、+6x-4=0和圆C2:x2+y2+6y-28=0.(1)求两圆公共弦所在直线的方程及弦长;(2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.相交弦及圆系方程问题的解决1.求两圆的公共弦所在直线的方程的方法:将两圆方程相减即得两圆公共弦所在直线方程,但必须注意只有当两圆方程中二次项系数相同时,才能如此求解,否则应先调整系数.2.求两圆公共弦长的方法:一是联立两圆方程求出交点坐标,再用距离公式求解;二是先求出两圆公共弦所在的直线方程,再利用半径长、弦心距和弦长的一半构成的直角三角形求解.3.已知圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相

    5、交,则过两圆交点的圆的方程可设为x2+y2+D1x+E1y+F1+(x2+y2+D2x+E2y+F2)=0(-1).跟踪训练1 两圆相交于两点A(1,3)和B(m,-1),两圆圆心都在直线x-y+c=0上,则m+c的值为.例3求与圆x2+y2-2x=0外切且与直线x+3y=0相切于点M(3,-3)的圆的方程.变式探究1 将本例变为“求与圆x2+y2-2x=0外切,圆心在x轴上,且过点(3,- 3)的圆的方程”,如何求?变式探究2将本例改为“若圆x2+y2-2x=0与圆x2+y2-8x-8y+m=0相外切”,试求实数m的值.1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是(

    6、)A.内切 B.相交 C.外切 D.外离2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 .3.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为()A.(x-4)2+(y-6)2=16 B.(x4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x4)2+(y-6)2=364.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于.5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切

    7、的圆的方程.参考答案:知识梳理1.解:根据题意得,两圆的半径分别为r1=1和r2=4,两圆的圆心距d=2-(-2)2+(5-2)2=5.因为d=r1+r2,所以两圆外切.将两圆的方程化为标准方程,得(x+3)2+y2=16,x2+(y+3)2=36,故两圆的半径分别为r1=4和r2=6.两圆的圆心距d=0-(-3)2+(-3-0)2=32,因为|r1-r2|dr1+r2,所以两圆相交.学习过程例1 思路分析:求出圆心距,与两半径的和或差比较求出a的值.解:圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,圆心C1(a,1),C2(2

    8、a,1),半径r1=4,r2=1.|C1C2|=(a-2a)2+(1-1)2=a.(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切;当|C1C2|=r1-r2=3,即a=3时,两圆内切.(2)当3|C1C2|5,即3a5,即a5时,两圆外离.(4)当|C1C2|3,即0a0.两圆的圆心、半径长分别为(0,0),a与(-3,4),6.由于两圆内切,则(0+3)2+(0-4)2=|a-6|,解得a=121或a=1. 答案:121或1 例2 思路分析:(1)两圆方程相减求出公共弦所在直线方程,再根据半径、弦心距、弦长的关系求出弦长.(2)可求出两圆的交点坐标,结合圆心在直线x-y-4=0上

    9、求出圆心坐标与半径,也可利用圆系方程求解.解:(1)设两圆交点为A(x1,y1),B(x2,y2),则A,B两点坐标是方程组x2+y2+6x-4=0, x2+y2+6y-28=0,的解.-,得x-y+4=0.A,B两点坐标都满足此方程,x-y+4=0即为两圆公共弦所在直线的方程.又圆C1的圆心(-3,0),r=13,C1到直线AB的距离为d=|-3+4|2=22,|AB|=2r2-d2=213-12=52,即两圆的公共弦长为52.(2)(方法1)解方程组x2+y2+6x-4=0,x2+y2+6y-28=0,得两圆的交点A(-1,3),B(-6,-2).设所求圆的圆心为(a,b),因圆心在直线x

    10、-y-4=0上,故b=a-4.则(a+1)2+(a-4-3)2=(a+6)2+(a-4+2)2,解得a=12,故圆心为12,-72,半径为892.故圆的方程为(x-12)2+(y+72)2=892,即x2+y2-x+7y-32=0.(方法2)设所求圆的方程为x2+y2+6x-4+(x2+y2+6y-28)=0(-1),其圆心为(-31+,-31+),代入x-y-4=0,解得=-7.故所求圆的方程为x2+y2-x+7y-32=0.跟踪训练1 解析:由题意知直线AB与直线x-y+c=0垂直,kAB1=-1.即3-(-1)1-m=-1,得m=5,AB的中点坐标为(3,1).AB的中点在直线x-y+c

    11、=0上,3-1+c=0,c=-2,m+c=5-2=3.答案:3 例3思路分析:设圆的方程,利用两圆外切和直线与圆相切建立方程组求得.解:设所求圆的方程为(x-a)2+(y-b)2=r2(r0),由题知所求圆与圆x2+y2-2x=0外切,则(a-1)2+b2=r+1.又所求圆过点M的切线为直线x+3y=0,故b+3a-3=3. |a+3b|2=r.解由组成的方程组得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y2=4或x2+(y+43)2=36.变式探究1 解:因为圆心在x轴上,所以可设圆心坐标为(a,0),设半径为r,则所求圆的方程为(x-a)2+y2=r

    12、2,又因为与圆x2+y2-2x=0外切,且过点(3,-3),所以(a-1)2+02=r+1,(3-a)2+(-3)2=r2, 解得a=4,r=2,所以圆的方程为(x-4)2+y2=4.又因为与圆x2+y2-2x=0外切,且过点(3,-3),所以(a-1)2+02=r+1,(3-a)2+(-3)2=r2, 解得a=4,r=2,所以圆的方程为(x-4)2+y2=4.变式探究2解:圆x2+y2-2x=0的圆心为A(1,0),半径为r1=1,圆x2+y2-8x-8y+m=0的圆心为B(4,4),半径为r2=32-m.因为两圆相外切,所以(4-1)2+(4-0)2=1+32-m,解得m=16.达标检测1

    13、. 解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.|O1O2|=5,R2-R1|O1O2|R2+R1,圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=4;若b=-6,则a无解.故所求圆方程为(x4)2+(y-6)2=36.答案:D4.解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=a2+02=2-1=1.解得a=1.答案:1 5. 解:设所求圆的方程为x2+y2+4-2x-4y+(x2+y2-4)=0,即(1+)x2+(1+)y2-2x-4y+4(1-)=0.所以圆心为11+,21+,半径为12(-21+)2+(-41+)2-16(1-1+),即11+41+5=124+16-16(1-2)(1+)2.解得=1,舍去=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2.5.2 圆与圆的位置关系 导学案-人教A版高中数学选择性必修第一册.docx
    链接地址:https://www.163wenku.com/p-3217231.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库