2.5.2 圆与圆的位置关系 导学案-人教A版高中数学选择性必修第一册.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2.5.2 圆与圆的位置关系 导学案-人教A版高中数学选择性必修第一册.docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.5.2 圆与圆的位置关系 导学案-人教A版高中数学选择性必修第一册 2.5 位置 关系 导学案 人教 高中数学 选择性 必修 一册 下载 _必修第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、2.5.2 圆与圆的位置关系(导学案) 1.掌握圆与圆的位置关系及判定方法.2.能根据圆的方程判断圆与圆的位置关系.3.能综合应用圆与圆的位置关系解决问题.重点:圆与圆的位置关系及判定方法 难点:综合应用圆与圆的位置关系解决问题 圆与圆的位置关系的判定方法1.几何法:圆O1:(x-x1)2+(y-y1)2=r12(r10),圆O2:(x-x2)2+(y-y2)2=r22(r20),两圆的圆心距d=|O1O2|=(x1-x2)2+(y1-y2)2,则有位置关系外离外切相交内切内含图示d与r1,r2的关系dr1+r2d=r1+r2|r1-r2|dr1+r2d=|r1-r2|d0),圆O2:x2+y
2、2+D2x+E2y+F2=0(D22+E22-4F20),两圆的方程联立得方程组,则有方程组解的情况2组1组0组两圆的公共点2个1个0个两圆的位置关系相交外切或内切外离或内含小试牛刀1. 判断下列两圆的位置关系:(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16.x2+y2+6x-7=0与x2+y2+6y-27=0.一、 情境导学日食是一种天文现象,在民间称此现象为天狗食日。日食只在月球与太阳呈现合的状态时发生。日食分为日偏食、日全食、日环食、全环食。 我们将月亮与太阳抽象为圆,观察到的这些圆在变化的过程中位置关系是怎样的? 前面我们运用直线的方程,圆的方程研究了直线与圆的位置关
3、系,现在我们类比上述研究方法,运用圆的方程,通过定量计算研究圆与圆的位置关系。二、典例解析例1 已知圆C1:x2+y2-2ax-2y+a2-15=0(a0),圆C2:x2+y2-4ax-2y+4a2=0(a0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切; (2)相交; (3)外离; (4)内含?判断两圆的位置关系的两种方法(1)几何法:利用两圆半径的和或差与圆心距作比较,得到两圆的位置关系;(2)代数法:把两圆位置关系的判定完全转化为代数问题,转化为方程组的解的组数问题.跟踪训练1 若两圆x2+y2=a与x2+y2+6x-8y-11=0内切,则a的值为.例2已知圆C1:x2+y2
4、+6x-4=0和圆C2:x2+y2+6y-28=0.(1)求两圆公共弦所在直线的方程及弦长;(2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.相交弦及圆系方程问题的解决1.求两圆的公共弦所在直线的方程的方法:将两圆方程相减即得两圆公共弦所在直线方程,但必须注意只有当两圆方程中二次项系数相同时,才能如此求解,否则应先调整系数.2.求两圆公共弦长的方法:一是联立两圆方程求出交点坐标,再用距离公式求解;二是先求出两圆公共弦所在的直线方程,再利用半径长、弦心距和弦长的一半构成的直角三角形求解.3.已知圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相
5、交,则过两圆交点的圆的方程可设为x2+y2+D1x+E1y+F1+(x2+y2+D2x+E2y+F2)=0(-1).跟踪训练1 两圆相交于两点A(1,3)和B(m,-1),两圆圆心都在直线x-y+c=0上,则m+c的值为.例3求与圆x2+y2-2x=0外切且与直线x+3y=0相切于点M(3,-3)的圆的方程.变式探究1 将本例变为“求与圆x2+y2-2x=0外切,圆心在x轴上,且过点(3,- 3)的圆的方程”,如何求?变式探究2将本例改为“若圆x2+y2-2x=0与圆x2+y2-8x-8y+m=0相外切”,试求实数m的值.1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是(
6、)A.内切 B.相交 C.外切 D.外离2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 .3.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为()A.(x-4)2+(y-6)2=16 B.(x4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x4)2+(y-6)2=364.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于.5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切
展开阅读全文