3.1.1 椭圆及其标准方程 导学案-人教A版高中数学选择性必修第一册.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《3.1.1 椭圆及其标准方程 导学案-人教A版高中数学选择性必修第一册.docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.1.1 椭圆及其标准方程 导学案-人教A版高中数学选择性必修第一册 3.1 椭圆 及其 标准 方程 导学案 人教 高中数学 选择性 必修 一册 下载 _必修第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、3.1.1椭圆及其标准方程 导学案 1.理解椭圆的定义及椭圆的标准方程2.掌握用定义法和待定系数法求椭圆的标准方程3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题重点:椭圆的定义及椭圆的标准方程 难点:运用标准方程解决相关问题 1椭圆的定义把平面内与两个定点F1,F2的距离的和等于_的点的轨迹叫做椭圆,这_叫做椭圆的焦点,_叫做椭圆的焦距,焦距的_称为半焦距思考:(1)椭圆定义中将“大于|F1F2|”改为“等于|F1F2|”的常数,其他条件不变,点的轨迹是什么?(2)椭圆定义中将“大于|F1F2|”改为“小于|F1F2|”的常数,其他条件不变,动点的轨迹是什么?2.椭圆的标准方程
2、焦点在x轴上焦点在y轴上标准方程图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)a,b,c的关系b2=a2-c21. a=6,c=1的椭圆的标准方程是()A.x236+y235=1 B.y236+x235=1 C.x236+y21=1D.x236+y235=1或y236+x235=12. 椭圆x225+y2=1上一点P到一个焦点的距离为2,则点P到另一个焦点的距离为()A.5B.6 C.7D.83. 椭圆4x2+9y2=1的焦点坐标是()A.(5,0) B.(0,5) C.56,0D.536,0一、 情境导学 椭圆是圆锥曲线的一种具有丰富的几何性质,在科研生产和人类
3、生活中具有广泛的应用,那么椭圆到底有怎样的几何性质,我们该如何利用这些特征建立椭圆的方程,从而为研究椭圆的几何性质奠定基础。探究 取一条定长的细线,把它的两端都固定在图板的同一点套上铅笔拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个圆。如果把细绳的两端拉开一段距离,分别固定在图板中的两点F1,F2 ,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线? 在这一过程中,移动的笔尖(动点)满足的几何条件是什么? 观察椭圆的形状,你认为怎样建立坐标系可能使所得的椭圆方程形式简单? 一般地,如果椭圆的焦点为F1和F2,焦距为2c,而且椭圆上的动点P满足,PF1+PF2=2a其中ac0. 以F1F
4、2 所在直线为x轴,线段的垂直平分线为y轴,建立平面直角坐标系,如图所示,此时,椭圆的焦点分别为F1(-c,0)和F2( c,0)椭圆的标准方程(x+c)2+y2+(x-c)2+y2=2a. 为了化简方程,我们将其左边一个根式移到右边,得得(x+c)2+y2=2a-(x-c)2+y2.对方程两边平方,得(x+c)2+y2=4a2 -4ax-c2+y2+(x-c)2+y2整理,得a2-cx=ax-c2+y2 对方程两边平方,得a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2整理得 a2-c2x2+a2y2= a2a2-c2 将方程两边同除以a2a2-c2,得x2a2+y2a2
5、-c2=1 由椭圆的定义可知2a2c0 ,即ac0,所以a2-c20.观察图,你能从中找出表示a,c,a2-c2的线段吗?由图可知,PF1=PF2=a,OF1=OF2=c, PO=a2-c2令b=PO=a2-c2,那么方程就是;x2a2+y2b2=1 (ab0) 称焦点在x轴上的椭圆方程. 设椭圆的焦点为F1和F2,焦距为2c,而且椭圆上的动点P满足PF1+PF2=2a,其中ac0. 以F1F2 所在直线为y轴,线段的垂直平分线为x轴,建立平面直角坐标系,如图所示,此时:(1)椭圆焦点的坐标分别是什么?(2)能否通过x2a2+y2b2=1 (ab0) 来得到此时椭圆方程的形式?y2a2+x2b
6、2=1 (ab0),称焦点在y轴上的椭圆方程.二、 典例解析例1求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为F1(4,0),F2(4,0),并且椭圆上一点P与两焦点的距离的和等于10;(2)焦点坐标分别为(0,2),(0,2),经过点(4,3);(3)经过两点(2,),.用待定系数法求椭圆标准方程的一般步骤(1)定位置:根据条件判断椭圆的焦点是在x轴上,还是在y轴上,还是两个坐标轴都有可能(2)设方程:根据上述判断设方程1(ab0)或1(ab0)或整式形式mx2ny21(m0,n0,mn)(3)找关系:根据已知条件建立关于a,b,c(或m,n)的方程组(4)得方程:解方程组,将解
展开阅读全文