6.4.3 第3课时 余弦定理、正弦定理的应用举例-2020-2021学年高一数学新教材配套学案(人教A版2019必修第二册).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《6.4.3 第3课时 余弦定理、正弦定理的应用举例-2020-2021学年高一数学新教材配套学案(人教A版2019必修第二册).docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 6.4.3 第3课时 余弦定理、正弦定理的应用举例-2020-2021学年高一数学新教材配套学案人教A版2019必修第二册 6.4 课时 余弦 定理 正弦 应用 举例 2020 2021 学年 数学 下载 _必修第二册_人教A版(2019)_数学_高中
- 资源描述:
-
1、6.4.3 余弦定理、正弦定理第3课时 余弦定理、正弦定理的应用举例【学习目标】素 养 目 标学 科 素 养1.进一步熟悉余弦定理、正弦定理;2.了解常用的测量相关术语;3.能运用余弦定理、正弦定理等知识和方法解决有关距离、高度、角度的实际问题。1.数学抽象;2.逻辑推理;3.数学运算;4.数学模型。【自主学习】实际测量中的有关名称、术语名称定义图示仰角在同一铅垂平面内,视线在水平线上方时与水平线的夹角俯角在同一铅垂平面内,视线在水平线下方时与水平线的夹角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90)南偏西60方位角从正北的方向线按顺时针到目标方
2、向线所转过的水平角【小试牛刀】1.思维辨析(对的打“”,错的打“”)(1)已知三角形的三个角,能够求其三条边()(2)两个不可能到达的点之间的距离无法求得()(3)若P在Q的北偏东44,则Q在P的东偏北44方向()2. 从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为()ABC90 D180【经典例题】题型一 不能到达两点间的距离问题点拨:求解测量距离问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解构造数学模型时,尽量把已知元素放在同一个三角形中 例1 如图, A,B两点都在河的对岸(不可到达),设计一种测量A,B两点间的距离
3、的方法.并求出A,B间的距离。思考:在上述测量方案下,还有其他计算A,B两点间距离的方法吗?【跟踪训练】1 如图,若小河两岸平行,为了知道河对岸两棵树C,D(CD与河岸平行)之间的距离,选取岸边两点A,B(AB与河岸平行),测得数据:AB6 m,ABD60,DBC90,DAB75,试求C,D之间的距离 题型二 测量高度问题点拨:高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题例2 如图,AB是底部B不可到达的一座建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.并求出
4、建筑物的高度。【跟踪训练】2 如图,要在山坡上A,B两处测量与地面垂直的铁塔CD的高,由A,B两处测得塔顶C的仰角分别为60和45,AB长为40 m,斜坡与水平面成30角,则铁塔CD的高为_m.题型三 测量角度问题点拨:(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,在图形中标出相关的角和距离(2)根据实际选择正弦定理或余弦定理解三角形,然后将解得的结果转化为实际问题的解例3 位于某海域A处的甲船获悉,在其正东方向相距20 n mile的B处有一艘渔船遇险后抛锚等待营救。甲船立即前往营救,同时把消息告知位于甲船南偏西30 ,且与甲船相距7 n mile的C处的乙船,那么乙
5、船前往营救遇险渔船时的目标方向线(由观测点看目标的视线)的方向是北偏东多少度(精确到 1)?需要航行的距离是多少海里(精确到1 n mile)?【跟踪训练】3 地图测绘人员在点A测得某一目标参照物P在他的北偏东30的方向,且距离为40 m,之后该测绘人员沿正北方向行走了40 m,达到点B.试确定此时目标参照物P在他北偏东的度数以及他与目标参照物P的距离【当堂达标】1若P在Q的北偏东4450方向上,则Q在P的()A东偏北4510方向上B东偏北4550方向上C南偏西4450方向上 D西偏南4550方向上2.某观察站C与两灯塔A,B的距离分别为300米和500米,测得灯塔A在观察站C的北偏东30方向
展开阅读全文
链接地址:https://www.163wenku.com/p-3217159.html