4.3.2等比数列的前n项和公式 (2) 导学案- (人教A版 高二 选择性必修第二册).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《4.3.2等比数列的前n项和公式 (2) 导学案- (人教A版 高二 选择性必修第二册).docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.3.2等比数列的前n项和公式 2 导学案- 人教A版 高二 选择性必修第二册 4.3 等比数列 公式 导学案 人教 选择性 必修 第二 下载 _选择性必修 第二册_人教A版(2019)_数学_高中
- 资源描述:
-
1、4.3.2等比数列的前n项和公式 (2) 导学案 1.掌握等比数列的前n项和公式及其应用2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.重点:等比数列的前n项和公式及其应用 难点:运用等比数列解决实际问题 1. 等比数列的定义:一般地,如果一个数列从第 2 项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母 q表示(显然q0 ) 符号语言: anan-1=q(n2,nN*) 2.等差与等比数列3.等比数列的前n项和公式已知量首项a1、公比q(q1)与项数n首项a1、末项an与公比q(q1)首项a1、公比q1求和公式
2、Sn Sn Sn ; na1 一二2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图
3、过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?典例解析例11. 去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.为了确定处理生活垃圾的预算,请你测算一下从今年起5年内通过填埋方式处理的垃圾总量(精确到0.1万吨).解决数列应用题时一是:明确问题属于哪类应用问题,即明确是等差数列还是等比数列问题,还是含有递推关系的数列问题;二是:明确是求an,还是求Sn.细胞繁殖、利率、增长率等问题一般为等比数列问题跟踪训练1. 某地投入资金进行生态环境建设,并以此发展
4、旅游产业据规划,本年度投入800万元,以后每年投入将比上一年减少15,本年度当地旅游业收入估计为400万元由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增长14.求n年内的总投入与n年内旅游业的总收入例12. 某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8% ,且在每年年底卖出100头牛。设牧场从今年起每年年初的计划存栏数依次为c1,c2,c3,(1)写出一个递推公式,表示cn+1与cn之间的关系;(2)将(1)中的递推公式表示成cn+1 -k=r(cn-k)的形式,其中k, r为常数;(3)求S10=c1+c2+c3+c10的值(精确到1).1等比数列a
5、n的公比为q(q1),则数列a3,a6,a9,a3n,的前n项和为()A. B.C. D.2(2018全国卷)记Sn为数列an的前n项和若Sn2an1,则S6_.3数列,的前n项和为_. 4. 为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2018年开始出口,当年出口a吨,以后每年出口量均比上一年减少10%.(1)以2018年为第一年,设第n年出口量为an吨,试求an的表达式;(2)国家计划10年后终止该矿区的出口,问2018年最多出口多少吨?(0.9100.35,保留一位小数)(1)掌握用等比数列知识解决增长率等问题的数学模型,尤其要注意公比与项数的选取;(2)根
展开阅读全文