图论基本概念课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《图论基本概念课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本概念 课件
- 资源描述:
-
1、图论基本概念1第五部分第五部分 图论图论本部分主要内容本部分主要内容l 图的基本概念图的基本概念l 欧拉图、哈密顿图欧拉图、哈密顿图l 树树图论基本概念2绪论绪论图论的历史:图论的历史:图论的第一篇论文是瑞士数学家欧拉(图论的第一篇论文是瑞士数学家欧拉(Euler)发表于)发表于1736年出版的年出版的圣彼得堡科学院刊物中。圣彼得堡科学院刊物中。讨论一个所谓讨论一个所谓Konigsberg Seven Bridges Problem。图论基本概念3绪论绪论图论的作用:图论的作用:l 图与计算机:计算机中数据结构,离不开数组、串、各种图与计算机:计算机中数据结构,离不开数组、串、各种链接表、树和
2、图,因此图是计算机中数据表示、存储和运链接表、树和图,因此图是计算机中数据表示、存储和运算的基础算的基础 l 图与网络:图与网络:最大流问题:假设从城市最大流问题:假设从城市P到城市到城市Q的一个公路网,的一个公路网,公路网中每段公路上每天可以通过的汽车的数量有上限,公路网中每段公路上每天可以通过的汽车的数量有上限,那么经过该公路网,每天最多可以有多少辆汽车从城市那么经过该公路网,每天最多可以有多少辆汽车从城市P开到城市开到城市Q?最优支撑树问题:某一地区有若干个主要城市,拟最优支撑树问题:某一地区有若干个主要城市,拟修建高速公路把这些城市连接起来,使得从其中任何一个修建高速公路把这些城市连接
3、起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假设城市都可以经高速公路直接或间接到达另一个城市。假设已经知道了任意两个城市之间修建高速公路的成本,那么已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?应如何决定在哪些城市间修建高速公路,使得总成本最小?图论基本概念4第十四章第十四章 图的基本概念图的基本概念主要内容主要内容l 图图l 通路与回路通路与回路l 图的连通性图的连通性l 图的矩阵表示图的矩阵表示l 图的运算图的运算预备知识预备知识l 多重集合多重集合元素可以重复出现的集合元素可以重复出现的集合l 无序集无序集
4、A B=(x,y)|x A y B图论基本概念514.1 图图 无向图无向图G=,其中其中(1)V 为顶点集,元素称为顶点为顶点集,元素称为顶点 Vertex(2)E为为V V 的多重集,其元素称为无向边,简称边的多重集,其元素称为无向边,简称边 Edge实例实例 设设 V=v1,v2,v5,E=(v1,v1),(v1,v2),(v2,v3),(v2,v3),(v2,v5),(v1,v5),(v4,v5)则则 G=为一无向图为一无向图图论基本概念6有向图有向图 有向图有向图D=,只需注意只需注意E是是V V 的多重子集的多重子集图图2表示的是一个有向图,试写出它的表示的是一个有向图,试写出它的
5、V 和和 E 注意:图的数学定义与图形表示,在同构(待叙)的意义下注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的是一一对应的图论基本概念7相关概念相关概念1.图图 可用可用G泛指图(无向的或有向的)泛指图(无向的或有向的)V(G),E(G),|V(G)|,|E(G)|n阶图:阶图:n 个顶点的图个顶点的图2.有限图有限图3.n 阶零图(阶零图(0条边)与平凡图(条边)与平凡图(1个顶点)个顶点)4.空图空图(运算中出现)(运算中出现)5.用用 ek 表示无向边或有向边表示无向边或有向边图论基本概念8相关概念相关概念6.顶点与边的关联关系顶点与边的关联关系 关联、关联次数关联、
6、关联次数 环环 孤立点孤立点7.顶点之间的相邻与邻接关系顶点之间的相邻与邻接关系图论基本概念9)()()(),()(|)(vvNvNvvuGEvuGVuuvNv 的的闭闭邻邻域域的的邻邻域域)(|)(关关联联与与veGEeevI )()()()()()(,)(|)()(,)(|)(vvNvNvvvvNvvuDEvuDVuuvvvuDEuvDVuuvvDDDDDDD 的的闭闭邻邻域域的的邻邻域域的的先先驱驱元元集集的的后后继继元元集集8.邻域与关联集邻域与关联集 v V(G)(G为无向图为无向图)v 的关联集的关联集 v V(D)(D为有向图为有向图)9.标定图与非标定图标定图与非标定图(顶点和
7、边指定编号的)顶点和边指定编号的)10.基图(有向图的有向边改为无向边)基图(有向图的有向边改为无向边)相关概念相关概念图论基本概念10多重图与简单图多重图与简单图定义定义14.3 (1)无向图中的平行边及重数无向图中的平行边及重数 关联一对顶点的边多于一条,条数称为重数关联一对顶点的边多于一条,条数称为重数(2)有向图中的平行边及重数(注意方向性)有向图中的平行边及重数(注意方向性)(3)多重图多重图(4)简单图(无平行边和环)简单图(无平行边和环)简单图是极其重要的概念简单图是极其重要的概念 图论基本概念11顶点的度数顶点的度数 (1)设设G=为无向图为无向图,v V,d(v)v的度数的度
8、数,简称度简称度 (2)设设D=为有向图为有向图,v V,d+(v)v的出度的出度 d(v)v的入度的入度 d(v)v的度或度数的度或度数 (3)(G)(最大度)(最大度),(G)(最小度)(最小度)无向图中无向图中 (4)+(D),+(D),(D),(D),(D),(D)(5)度数为度数为1的点称为悬挂点,关联的边为悬挂边;的点称为悬挂点,关联的边为悬挂边;奇顶点度与偶度顶点奇顶点度与偶度顶点图论基本概念12mvdnii2)(1 mvdvdmvdniiniinii 111)()(,2)(且且定理定理 设设G=为任意无向图,为任意无向图,V=v1,v2,vn,|E|=m,则则证证 G中每条边中
9、每条边(包括环包括环)均有两个端点,所以在计算均有两个端点,所以在计算G中各顶点中各顶点度数之和时,每条边均提供度数之和时,每条边均提供2度,度,m 条边共提供条边共提供 2m 度度.此二定理是欧拉此二定理是欧拉17361736年给出,是图论的基本定理年给出,是图论的基本定理握手定理握手定理 设设D=为任意有向图,为任意有向图,V=v1,v2,vn,|E|=m,则则图论基本概念13握手定理推论握手定理推论推论推论 任何图任何图(无向或有向无向或有向)中,奇度顶点的个数是偶数中,奇度顶点的个数是偶数.证证 设设G=为任意图,令为任意图,令 V1=v|v V d(v)为奇数为奇数 V2=v|v V
10、 d(v)为偶数为偶数 则则V1 V2=V,V1 V2=,由握手定理可知,由握手定理可知由于由于2m,均为偶数,所以均为偶数,所以 为偶数,但因为为偶数,但因为V1中中顶点度数为奇数,所以顶点度数为奇数,所以|V1|必为偶数必为偶数.21)()()(2VvVvVvvdvdvdm 2)(Vvvd 1)(Vvvd图论基本概念14图的度数列图的度数列1.V=v1,v2,vn为无向图为无向图G的顶点集,称的顶点集,称d(v1),d(v2),d(vn)为为G的度数列的度数列 2.V=v1,v2,vn为有向图为有向图D的顶点集,的顶点集,D的度数列:的度数列:d(v1),d(v2),d(vn)D的出度列:
11、的出度列:d+(v1),d+(v2),d+(vn)D的入度列:的入度列:d(v1),d(v2),d(vn)3.非负整数列非负整数列d=(d1,d2,dn)是可图化的,是可简单图化的是可图化的,是可简单图化的.易知:易知:(2,4,6,8,10),(1,3,3,3,4)是可图化的,后者又是可是可图化的,后者又是可简单图化的,而简单图化的,而(2,2,3,4,5),(3,3,3,4)都不是可简单图化都不是可简单图化的,特别是后者也不是可图化的的,特别是后者也不是可图化的图论基本概念15图的同构图的同构 设设G1=,G2=为两个无向图为两个无向图(两个有向两个有向图图),若存在双射函数,若存在双射函
12、数f:V1V2,对于对于vi,vj V1,(vi,vj)E1 当且仅当当且仅当(f(vi),f(vj)E2 (E1 当且仅当当且仅当 E2)并且并且,(vi,vj)()与)与(f(vi),f(vj)()的重数相)的重数相同,则称同,则称G1与与G2是同构的,记作是同构的,记作G1 G2.l 图之间的同构关系具有自反性、对称性和传递性图之间的同构关系具有自反性、对称性和传递性.l 能找到多条同构的必要条件,但它们全不是充分条件:能找到多条同构的必要条件,但它们全不是充分条件:边数相同,顶点数相同边数相同,顶点数相同;度数列相同度数列相同;对应顶点的关联集及邻域的元素个数相同,等等对应顶点的关联集
13、及邻域的元素个数相同,等等 若破坏必要条件,则两图不同构若破坏必要条件,则两图不同构l 判断两个图同构是个难题判断两个图同构是个难题图论基本概念16图同构的实例图同构的实例图中图中(1)与与(2)的度数列相同,它们同构吗?为什么?的度数列相同,它们同构吗?为什么?(1)(2)(3)(4)图中,图中,(1)与与(2)不同构(度数列不同),不同构(度数列不同),(3)与与(4)也不同构也不同构.(1)(2)图论基本概念17n 阶完全图与竞赛图阶完全图与竞赛图定义定义14.6(1)n(n 1)阶无向完全图阶无向完全图每个顶点与其余顶点均相邻的每个顶点与其余顶点均相邻的无向简单图,记作无向简单图,记作
14、 Kn.简单性质:边数简单性质:边数(2)n(n 1)阶有向完全图阶有向完全图每对顶点之间均有两条方向相每对顶点之间均有两条方向相反的有向边的有向简单图反的有向边的有向简单图.简单性质:简单性质:(3)n(n 1)阶竞赛图阶竞赛图基图为基图为Kn的有向简单图的有向简单图.简单性质:边数简单性质:边数1,2)1(nnnm 1),1(2),1(nnnnm 1,2)1(nnnm 图论基本概念18n 阶阶 k 正则图正则图(1)为为K5,(2)为为3阶有向完全图,阶有向完全图,(3)为为4阶竞赛图阶竞赛图.(1)(2)(3)n 阶阶k正则图正则图=k 的无向简单图的无向简单图简单性质:边数(由握手定理
15、得)简单性质:边数(由握手定理得)Kn是是 n 1正则图,正则图,彼得松图(见书上图彼得松图(见书上图14.3(1)所示,记住它)所示,记住它)2nkm 图论基本概念19子图子图 G=,G=(1)GG G 为为G的子图,的子图,G为为G 的母图的母图(2)若若GG且且V=V,则称,则称G 为为G的生成子图的生成子图(3)若若VV或或EE,称,称G 为为G的真子图的真子图(4)V(VV且且V)的导出子图,记作)的导出子图,记作GV(5)E(EE且且E)的导出子图,记作)的导出子图,记作GE 图论基本概念20例例2 画出画出K4的所有非同构的生成子图的所有非同构的生成子图实例实例图论基本概念21补
16、图补图 设设G=为为n阶无向简单图,以阶无向简单图,以V为顶点集,以所有使为顶点集,以所有使G成为完全图成为完全图Kn的添加边组成的集合为边集的图,称为的添加边组成的集合为边集的图,称为G的的补图,记作补图,记作 .若若G ,则称则称G是自补图是自补图.相对于相对于K4,求上面图中所有图的补图,并指出哪些是自补图求上面图中所有图的补图,并指出哪些是自补图.问:互为自补图的两个图的边数有何关系?问:互为自补图的两个图的边数有何关系?GG图论基本概念2214.2 通路与回路通路与回路 给定图给定图G=(无向或有向的),(无向或有向的),G中顶点与中顶点与边的交替序列边的交替序列 =v0e1v1e2
17、elvl,vi 1,vi 是是 ei 的端点的端点.(1)通路与回路:通路与回路:为通路;若为通路;若 v0=vl,为回路,为回路,l 为回路长为回路长 度度.(2)简单通路与回路:所有边各异,简单通路与回路:所有边各异,为简单通路,又若为简单通路,又若v0=vl,为简单回路为简单回路(3)初级通路初级通路(路径路径)与初级回路与初级回路(圈圈):中所有顶点各异,则中所有顶点各异,则称称 为初级通路为初级通路(路径路径),又若除,又若除v0=vl,所有的顶点各不相,所有的顶点各不相同且所有的边各异,则称同且所有的边各异,则称 为初级回路为初级回路(圈圈)(4)复杂通路与回路:有边重复出现复杂通
18、路与回路:有边重复出现图论基本概念23几点说明几点说明表示法表示法 定义表示法定义表示法 只用边表示法只用边表示法 只用顶点表示法(在简单图中)只用顶点表示法(在简单图中)混合表示法混合表示法环环(长为(长为1的圈)的长度为的圈)的长度为1,两条平行边构成的圈长度为,两条平行边构成的圈长度为 2,无向简单图中,圈长,无向简单图中,圈长 3,有向简单图中圈的长度,有向简单图中圈的长度 2.不同的圈(以长度不同的圈(以长度 3的为例)的为例)定义意义下定义意义下 无向图:图中长度为无向图:图中长度为l(l 3)的圈,定义意义下为)的圈,定义意义下为2l个个 有向图:图中长度为有向图:图中长度为l(
19、l 3)的圈,定义意义下为)的圈,定义意义下为l个个 同构意义下:长度相同的圈均为同构意义下:长度相同的圈均为1个个试讨论试讨论l=3和和l=4的情况的情况图论基本概念24通路与回路的长度通路与回路的长度 在在n 阶图阶图G中,若从顶点中,若从顶点vi 到到vj(vi vj)存在通路,)存在通路,则从则从vi 到到 vj 存在长度小于或等于存在长度小于或等于n 1 的通路的通路.推论推论 在在 n 阶图阶图G中,若从顶点中,若从顶点vi 到到 vj(vi vj)存在通路,则)存在通路,则从从vi 到到vj 存在长度小于或等于存在长度小于或等于n 1的初级通路(路径)的初级通路(路径).在一个在
20、一个n 阶图阶图G中,若存在中,若存在 vi 到自身的回路,则一到自身的回路,则一定存在定存在vi 到自身长度小于或等于到自身长度小于或等于 n 的回路的回路.推论推论 在一个在一个n 阶图阶图G中,若存在中,若存在 vi 到自身的简单回路,则一到自身的简单回路,则一定存在长度小于或等于定存在长度小于或等于n 的初级回路的初级回路.图论基本概念25 图的连通性图的连通性无向图的连通性无向图的连通性(1)顶点之间的连通关系:顶点之间的连通关系:G=为无向图为无向图 若若 vi 与与 vj 之间有通路,则之间有通路,则 vi vj 是是V上的等价关系上的等价关系 R=|u,v V且且u v(2)G
21、的连通性与连通分支的连通性与连通分支 若若 u,v V,u v,则称,则称G连通连通 V/R=V1,V2,Vk,称,称GV1,GV2,GVk为连通分为连通分 支,其个数支,其个数 p(G)=k (k 1);k=1,G连通连通图论基本概念26短程线与距离短程线与距离(3)短程线与距离短程线与距离 u与与v之间的短程线:之间的短程线:u v,u与与v之间长度最短的通路之间长度最短的通路 u与与v之间的距离:之间的距离:d(u,v)短程线的长度短程线的长度 d(u,v)的性质:的性质:d(u,v)0,u v时时d(u,v)=d(u,v)=d(v,u)d(u,v)+d(v,w)d(u,w)图论基本概念
展开阅读全文