人教课标版《三角函数模型的简单应用》PPT公开课课件1.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教课标版《三角函数模型的简单应用》PPT公开课课件1.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数模型的简单应用 教课 三角函数 模型 简单 应用 PPT 公开 课件
- 资源描述:
-
1、1.6 1.6 三角函数模型的简单应用三角函数模型的简单应用 第一课时第一课时 问题提出问题提出 1.1.函数函数 中的参数中的参数 对图象有什么影响?三角函数的性质包对图象有什么影响?三角函数的性质包括哪些基本内容?括哪些基本内容?sin()yAx,A 2.2.我们已经学习了三角函数的概念、图象与我们已经学习了三角函数的概念、图象与性质,其中周期性是三角函数的一个显著性性质,其中周期性是三角函数的一个显著性质质.在现实生活中,如果某种变化着的现象在现实生活中,如果某种变化着的现象具有周期性,那么它就可以借助三角函数来具有周期性,那么它就可以借助三角函数来描述,并利用三角函数的图象和性质解决相
2、描述,并利用三角函数的图象和性质解决相应的实际问题应的实际问题.探究一:根据图象建立三角函数关系探究一:根据图象建立三角函数关系思考思考1 1:这一天这一天6 61414时的最大温差是多少?时的最大温差是多少?【背景材料背景材料】如图,某地一天从如图,某地一天从6 61414时时的温度变化曲线近似满足函数的温度变化曲线近似满足函数:sin()yAxbT/102030ot/h6 10 14思考思考2 2:函数式中函数式中A A、b b的值分别是多少?的值分别是多少?3030-10-10=20=20A=10,b=20.A=10,b=20.T/102030ot/h6 10 14sin()yAxb思考
3、思考3 3:如何确定函数如何确定函数式中式中 和和 的值的值?wj3,84思考思考4 4:这段曲线对应的函数是什么?这段曲线对应的函数是什么?3y10sin(x)20,x6,14.84思考思考5 5:这一天这一天1212时的温度大概是多少时的温度大概是多少 ()?)?27.07.27.07.探究二:探究二:根据相关数据进行三角函数拟合根据相关数据进行三角函数拟合【背景材料背景材料】海水受日月的引力,在一海水受日月的引力,在一定的时候发生涨落的现象叫定的时候发生涨落的现象叫潮潮.一般地,一般地,早潮叫早潮叫潮潮,晚潮叫,晚潮叫汐汐.在通常情况下,船在通常情况下,船在涨潮时驶进航道,靠近码头;卸货
4、后,在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋在落潮时返回海洋.下面是某港口在某季下面是某港口在某季节每天的时间与水深关系表:节每天的时间与水深关系表:5.05.02.52.55.05.07.57.55.05.02.52.55.05.07.57.55.05.0水深/米24211815129630时刻思考思考1 1:观察表格中的数据,每天水深观察表格中的数据,每天水深的变化具有什么规律性?的变化具有什么规律性?呈周期性变化规律呈周期性变化规律.5.05.02.52.55.05.07.57.55.05.02.52.55.05.07.57.55.05.0水深/米24211815129630
5、时刻思考思考2 2:设想水深设想水深y y是时间是时间x x的函数,的函数,作出表中的数据对作出表中的数据对应的散点图,你认应的散点图,你认为可以用哪个类型为可以用哪个类型的函数来拟合这些的函数来拟合这些数据?数据?yo18246122468x5.05.02.52.55.05.07.57.55.05.02.52.55.05.07.57.55.05.0水深/米24211815129630时刻思考思考3:3:用一条光滑曲线连结这些点,用一条光滑曲线连结这些点,得到一个函数图象,该图象对应的函数得到一个函数图象,该图象对应的函数解析式可以是哪种形式?解析式可以是哪种形式?3xyo1824612246
6、8yAsin(x)h思考思考4 4:用函数用函数 来来刻画水深和时间之间的对应关系,如何刻画水深和时间之间的对应关系,如何确定解析式中的参数值?确定解析式中的参数值?yAsin(x)hA2.5,h5,T12,0,6xyo18246122468思考思考5 5:这个港口的水深与时间的关系可这个港口的水深与时间的关系可用函数用函数 近似描述,你能近似描述,你能根据这个函数模型,求出各整点时水深根据这个函数模型,求出各整点时水深的近似值吗?(精确到的近似值吗?(精确到0.0010.001)y2.5sinx563.7543.7542.8352.8352.5002.5002.8352.8353.7543.
展开阅读全文