人教A版高中数学选择性必修二《4.3.2等比数列的前n项和公式(第2课时)》教案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教A版高中数学选择性必修二《4.3.2等比数列的前n项和公式(第2课时)》教案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.3.2等比数列的前n项和公式第2课时 人教 高中数学 选择性 必修 4.3 等比数列 公式 课时 教案 下载 _选择性必修 第二册_人教A版(2019)_数学_高中
- 资源描述:
-
1、4.3.2等比数列的前n项和公式 (2) 本节课选自2019人教A版高中数学选择性必修二第四章数列,本节课主要学习等比数列的前n项和公式数列是高中代数的主要内容,它与数学课程的其它内容(函数、三角、不等式等)有着密切的联系,又是今后学习高等数学的基础,所以在高考中占有重要地位。学生在已学习等差数列前n项和公式的基础上,引导学生类比学习等比数列前n项和公式,让学生经历公式的推导过程,体会化无限为有限,体验从特殊到一般的研究方法,学会观察、归纳、反思,进一步培养学生灵活运用公式的能力。发展学生逻辑推理、直观想象、数学运算和数学建模的的核心素养。课程目标学科素养A.掌握等比数列的前n项和公式及其应用
2、B.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.1.数学抽象:等比数列的前n项和公式2.逻辑推理:等比数列的前n项和公式的运用3.数学运算:等比数列的前n项和公式的运用4.数学建模:运用等比数列的前n项和公式解决实际问题重点:等比数列的前n项和公式及其应用 难点:运用等比数列解决实际问题 多媒体教学过程教学设计意图核心素养目标一、 知识回顾 等比数列的前n项和公式已知量首项a1、公比q(q1)与项数n首项a1、末项an与公比q(q1)首项a1、公比q1求和公式Sn Sn Sn ; na1 二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点
3、E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a1,后续各正方形的面积依次为a2, a3,an,,则a1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以ak+1=12ak,因此an,是以25为首项,12为公比的等比数列.设an的前项和为Sn(1)S
4、10=251-12101-12=501-1210=25575512所以,前10个正方形的面积之和为25575512cm2.(2)当无限增大时,无限趋近于所有正方形的面积和a1+a2+a3+an+,而Sn=251-12n1-12=501-12n,随着n的无限增大,12n将趋近于0,Sn将趋近于50.所以,所有这些正方形的面积之和将趋近于50.典例解析例11. 去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.为了确定处理生活垃圾的预算,请你测算一下从今年起5年内通过填埋方式
5、处理的垃圾总量(精确到0.1万吨).分析:由题意可知,每年生活垃圾的总量构成等比数列,而每年以环保方式处理的垃圾量构成等差数列。因此,可以利用等差数列、等比数列的知识进行计算。解:设从今年起每年生活垃圾的总量(单位:万吨)构成数列an,每年以环保方式处理的垃圾量(单位:万吨)构成数列bn, n年内通过填埋方式处理的垃圾总量为 Sn (单位:万吨),则an=20(1+5%)n, bn=6+1.5 n,Sn=a1-b1+a2-b2+an-bn=a1+a2+an-b1+b2+bn=201.05+201.052+201.05n-(7.5+9+6+1.5n)=(201.05)(1-1.05n)1-1.0
6、5-n2(7.5+6+1.5n)=4201.05n-34n2-274n-420当n=5时,S5 63.5所以,从今年起5年内,通过填埋方式处理的垃圾总量约为 63.5万吨.解决数列应用题时一是:明确问题属于哪类应用问题,即明确是等差数列还是等比数列问题,还是含有递推关系的数列问题;二是:明确是求an,还是求Sn.细胞繁殖、利率、增长率等问题一般为等比数列问题跟踪训练1. 某地投入资金进行生态环境建设,并以此发展旅游产业据规划,本年度投入800万元,以后每年投入将比上一年减少15,本年度当地旅游业收入估计为400万元由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增长14.求n
展开阅读全文