人教A版高中数学必修三《7.5正态分布》教案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教A版高中数学必修三《7.5正态分布》教案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 7.5正态分布 人教 高中数学 必修 7.5 正态分布 教案 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、7.5 正态分布 本节课选自2019人教A版高中数学选择性必修第三册,第七章随机变量及其分布列,本节课主本节课主要学习正态分布 本节课是前面学习了离散型随机变量,离散型随机变量的取值是可列的。而连续型随机变量,连续型随机变量是在某个区间内可取任何值。其重要的代表正态分布。正态分布该节内容通过研究频率分布直方图、频率分布折线图、总体密度曲线,引出拟合的函数式,进而得到正态分布的概念,然后,分析正态曲线的特点和性质,最后研究了它的应用随机变量落在某个区间的概率。正态分布是描述随机现象的一种最常见的分布,在现实生活中有非常广泛的应用。 课程目标学科素养A. 通过误差模型,了解服从正态分布的随机变量;
2、2.通过具体实例,借助频率分布直方图的几何直观,了解正态分布的特点;3.了解正态分布的均值、方差及其含义;4.了解3原则,会求随机变量在特殊区间内的概率.1.数学抽象:正态分布曲线的特点2.逻辑推理:正态分布的概念 3.数学运算:求随机变量在特殊区间内的概率4.数学建模:模型化思想重点:认识分布曲线的特点及曲线所表示的意义.了解3原则.难点:.会求随机变量在特殊区间内的概率.多媒体教学过程教学设计意图核心素养目标一、 探究新知现实中,除了前面已经研究过的离散型随机变量外,还有大量问题中的随机变量,不是离散的,它们的取值往往充满某个区间甚至整个实轴,但取一点的概率为0,我们称这类随机变量为连续性
3、随机变量,下面我们看一个具体问题.探究1:自动流水线包装的食盐,每袋标准质量为400g. 由于各种不可控的因素,任意抽取一袋食盐,它的质量与标准质量之间或多 或少会存在一定的误差(实际质量减去标准质量). 用X表示这种误差,则X是一个连续型随机变量. 检测人员在一次产品检验中, 随机抽取了100袋食盐,获得误差X (单位:g)的观测值如下:-0.6-1.4-0.7 3.3-2.9-5.21.4 0.1 4.4 0.9-2.6-3.4-0.7-3.2-1.7 2.9 0.6 1.7 2.9 1.2 0.5-3.7 2.7 1.1-3.0-2.6-1.9 1.7 2.6 0.4 2.6-2.0-0
4、.2 1.8-0.7-1.3-0.5-1.3 0.2-2.1 2.4 -1.5-0.4 3.8-0.11.5 0.3-1.8 0.0 2.5 3.5-4.2-1.0-0.2 0.10.9 1.12.2 0.9-0.6-4.4-1.1 3.9-1.0-0.61.7 0.3-2.4-0.1-1.7-0.5-0.8 1.7 1.4 4.4 1.2-1.8-3.1-2.1-1.6 2.2 0.34.8-0.8-3.5-2.7 3.8 1.4-3.5-0.9-2.2 -0.7-1.3 1.5-1.5 -2.2 1.0 1.3 1.7-0.9(1).如何描述这100个样本误差数据的分布?(2).如何构建适
5、当的概率模型刻画误差X的分布? 可用频率分布直方图描述这组误差数据的分布,如右图.所示.频率分布直方图中每个小矩形的面积表示误差落在相应区间内的频率,所有小矩形的面积之和为1. 观察图形,误差观测值有正有负,并大致对称地分布在X=0的两侧,而且小误差比大误差出现得更频繁. 随着样本数据量越来越大,让分组越来越多,组距越来越小,由频率的稳定性可知,规率分布直方图的轮廓就越来越稳定,接近一条光滑的钟形曲线,如右图所示。 根据频率与概率的关系,可用以用上图中的钟型曲线来描述袋装食盐质量误差的概率分布.任意抽取一袋盐,误差落在-2,-1内的概率,可以用图中黄色阴影部分的面积表示.问题1:由函数知识可知
6、,图中的钟形曲线是一个函数,那么,这个函数是否存在解析式呢? 对任意的xR,f(x)0,它的图象在x轴的上方.可以证明x轴和曲线之间的区域的面积为1.我们称f(x)为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,如上图所示.若随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布(normal dis-tribution),记为XN(u,2).特别地,当u=0, =1时,称随机变量X服从标准正态分布.正态分布的定义正态分布在概率和统计中占有重要地位,它广泛存在于自然现象、生产和生活实践之中.在现实生活中,很多随机变量都服从或近似服从正态分布 例如,某些物理量的测量误差某一地
7、区同年龄人群的身高、体重、肺活量等一定条件下生长的小麦的株高、穗长、单位面积产量自动流水线生产的各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容)某地每年7月的平均气温、平均湿度、降水量等探究2:观察正态曲线及相应的密度函数,你能发现正态曲线的哪些特点?x其中R,0为参数.由X的密度函数及图像可以发现,正态曲线有以下特点:(1)曲线在x轴的上方,与x轴不相交.(2)曲线是单峰的,它关于直线x=对称.(3)曲线在x=处达到峰值 12 (最高点)(4)当|X|无限增大时,曲线无限接近x轴.(5)X轴与正态曲线所夹面积恒等于1 .探究3:观察正态曲线、相应的密度函数及概率的性质,你能发现正
8、态曲线的哪些特点?(1) 当一定时,曲线随着的变化而沿x轴平移;(2)当一定时,曲线的形状由确定 .越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.正态分布的期望和方差参数反映了正态分布的集中位置,反映了随机变量的分布相对于均值的离散程度。概念辨析1、把一个正态曲线a沿着横轴方向向右移动2个单位,得到新的一条曲线b。下列说法中不正确的是( )A.曲线b仍然是正态曲线;B.曲线a和曲线b的最高点的纵坐标相等;C.以曲线b为概率密度曲线的总体的期望比以曲线a为概率密度曲线的总体的期望大2;D.以曲线b为概率密度曲线的总体的方差比以曲线a为概率密度曲线的总体的
展开阅读全文