人教A版高中数学必修三《8.2一元线性回归模型及其应用》教案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教A版高中数学必修三《8.2一元线性回归模型及其应用》教案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 8.2一元线性回归模型及其应用 人教 高中数学 必修 8.2 一元 线性 回归 模型 及其 应用 教案 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、8.2 一元线性回归模型及其应用 本节课选自2019人教A版高中数学选择性必修第三册,第七章随机变量及其分布列,本节课主本节课主要学习一元线性回归模型及其应用. 本章主要学习统计方面知识,在之前学生已经对统计相关的知识做了大概的了解,本节学生要继续探讨的是变量之间的相关关系,变量之间有两类关系;函数关系和相关关系,它们的联系与区别;并了解线性相关及相关系数,为了解线性回归的基本思想和方法以及求回归直线的方程和相关性检验做准备。 课程目标学科素养A. 能通过具体实例说明一元线性回归模型修改的依据与方法.b.通过对具体问题的进一步分析,能将某些非线性回归问题转化为线性回归问题并加以解决,提高数学运
2、算能力.c.能通过实例说明决定系数R2的意义和作用,提高数据分析能力。1.数学抽象:一元线性回归模型2.逻辑推理:最小二乘法与回归方程3.数学运算:求决定系数4.数学建模:模型化思想重点:决定系数R2的意义和作用难点:某些非线性回归问题转化为线性回归问题 多媒体教学过程教学设计意图核心素养目标一、 问题导学通过前面的学习我们已经了解到,根据成对样本数据的散点图和样本相关系数,可以推断两个变量是否存在相关关系、是正相关还是负相关,以及线性相关程度的强弱等. 如果能像建立函数模型刻画两个变量之间的确定性关系那样,通过建立适当的统计模型刻画两个随机变量的相关关系,那么我们就可以利用这个模型研究两个变
3、量之间的随机关系,并通过模型进行预测.二、 探究新知探究1:生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说,父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者之间的关系,有人调查了14名男大学生的身高及其父亲的身高,得到的数据如表所示.编号1234567891011121314父亲身高/cm174170173169182172180172168166182173164180儿子身高/cm176176170170185176178174170168178172165182可以发现,散点大致分布在一条从左下角到右上角的直线附近,表明儿子身高和父亲身高线性相关.利用统计软件,求得样本
4、相关系数为r0.886,表明儿子身高和父亲身高正线性相关,且相关程度较高探究2. 根据表中的数据,儿子身高和父亲身高这两个变量之间的关系可以用函数模型刻画吗?编号1234567891011121314父亲身高/cm174170173169182172180172168166182173164180儿子身高/cm176176170170185176178174170168178172165182表中的数据,存在父亲身高相同而儿子身高不同的情况.例如,第6个和第8个观测父亲的身高均为172cm,而对应的儿子的身高为176cm和174cm;同样在第3,4个观测中,儿子的身高都是170cm,而父亲的身
5、高分别为173cm,169cm.可见儿子的身高不是父亲身高的函数同样父亲的身高也不是儿子身高的函数,所以不能用函数模型来刻画.探究3:从成对样本数据的散点图和样本相关系数可以发现,散点大致分布在一条直线附近表明儿子身高和父亲身高有较强的线性关系.我们可以这样理解,由于有其他因素的存在,使儿子身高和父亲身高有关系但不是函数关系.那么影响儿子身高的其他因素是什么?影响儿子身高的因素除父亲的身外,还有母亲的身高、生活的环境、饮食习惯、营养水平、体育锻炼等随机的因素,儿子身高是父亲身高的函数的原因是存在这些随机的因素.探究3:由探究3我们知道,正是因为存在这些随机的因素,使得儿子的身高呈现出随机性各种
6、随机因素都是独立的,有些因素又无法量化.你能否考虑到这些随机因素的作用,用类似于函数的表达式,表示儿子身高与父亲身高的关系吗? 如果用x表示父亲身高,Y表示儿子的身高,用e表示各种其他随机因素影响之和,称e为随机误差,由于儿子身高与父亲身高线性相关,所以Y=bx+a.一元线性回归模型 用X表示父亲身高,Y表示儿子身高,e表示随机误差,假定随机误差e的均值为0,方差为与父亲身高无关的定值2,则它们之间的关系可以表示为Y=bx+a+eE(e)=0,D(e)=2, (1)我们称(1)式为Y关于x的一元线性回归模型(simple linear regression model).其中,Y称为因变量或响
7、应变量,x称为自变量或解释变量;a和b为模型的未知参数,a称为截距参数,b称为斜率参数;e是Y与bx+a之间的随机误差,模型中的Y也是随机变量,其值虽然不能由变量x的值确定,但是却能表示为bx+a与e的和(叠加),前一部分由x所确定,后一部分是随机的,如果e=0,那么Y与x之间的关系就可用一元线性函数模型来描述.问题1. 你能结合父亲与儿子身高的实例,说明回归模型的意义? 可以解释为父亲身高为xi的所有男大学生身高组成一个子总体,该子总体的均值为bxi+a,即该子总体的均值与父亲的身高是线性函数关系.而对于父亲身高为xi的某一名男大学生,他的身高yi并不一定为bxi+a,它仅是该子总体的一个观
8、测值,这个观测值与均值有一个误差项ei=yi (bxi+a).问题2.你能结合具体实例解释产生模型中随机误差项的原因吗?产生随机误差e的原因有:(1)除父亲身高外,其他可能影响儿子身高的因素,比如母亲身高、生活环境、饮食习惯和锻炼时间等.(2)在测量儿子身高时,由于测量工具、测量精度所产生的测量误差.(3)实际问题中,我们不知道儿子身高和父亲身高的相关关系是什么,可以利用一元线性回归模型来近似这种关系,这种近似关系也是产生随机误差e的原因. 与函数模型不同,回归模型的参数一般是无法精确求出的,只能通过成对样本数据估计这两个参数。参数a和b刻画了变量Y与变量x的线性关系,因此通过样本数据估计这两
9、个参数,相当于寻找一条适当的直线,使表示成对样本数据的这些散点在整体上与这条直线最接近.问题3:为了研究两个变量之间的相关关系,我们建立了一元线性回归模型达式 刻画的是变量Y与变量x之间的线性相关关系,其中参数a和b未知,我们能否通过样本数据估计参数a和b?问题4.我们怎样寻找一条“最好”的直线,使得表示成对样本数据的这些散点在整体上与这条直线最“接近”?目标:从成对样本数据出发,用数学的方法刻画“从整体上看,各散点与直线最接近”方法:利用点到直线y=bx+a的“距离”来刻画散点与该直线的接近程度,然后用所有“距离”之和刻画所有样本观测数据与该直线的接近程度. 我们设满足一元线性回归模型的两个
10、变量的n对样本数据为(x1,y1),(x2,y2),(xn,yn),由yi=bxi+a+ei(i=1,2,n),得|yi-(bxi+a)|=|ei|.显然|ei|越小,表示点(xi,yi)与点(xi,bxi+a)的“距离”越小,即样本数据点离直线y=bx+a的竖直距离越小。特别地,当ei=0时,表示点(xi,yi)在这条直线上.因此,可以用 来刻画各样本观测数据与直线y=bx+a的整体接近程度。在实际应用中,因为绝对值使得计算不方便,所以人们通常用各散点到直线的竖直距离的平方之和来刻画“整体接近程度”残差平方和:求a,b的值,使Q(a,b)最小在上式中,xi,yi(i=1,2,3,n)是已知的
11、成对样本数据,所以Q由a和b所决定,即它是a和b的函数,因为Q还可以表示为i=1nei,即它是随机误差的平方和,这个和当然越小越好,所以我们取使Q达到最小的a和b的值,作为截距和斜率的估计值。下面利用成对样本数据求使Q取最小值的上式是关于b的二次函数,因此要使Q取得最小值,当且仅当b的取值为我们将 称为Y关于x的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,这种求经验回归方程的方法叫最小二乘法注意:1、经验回归必过(x,y).2、a,b,c都是估计值.3 、b与r符号相同.问题5:利用下表的数据,依据用最小二乘估计一元线性回归模型参数的公式,求出儿子身高Y关于父亲身高x
12、的经验回归方程。通过信息技术,计算求得编号1234567891011121314父亲身高/cm174170173169182172180172168166182173164180儿子身高/cm176176170170185176178174170168178172165182问题6:当x=176时, ,如果一位父亲身高为176cm,他儿子长大后身高一定能长到177cm吗?为什么? 儿子的身高不一定会是177cm,这是因为还有其他影响儿子身高的因素,回归模型中的随机误差清楚地表达了这种影响,父亲的身高不能完全决定儿子的身高,不过,我们可以作出推测,当父亲的身高为176cm时,儿子身高一般在177
13、cm左右. 如果把父亲身高为176cm的所有儿子身高作为一个子总体,那么177cm是这个子总体均值的估计值.一般地,因为E(Y)=bx+a,y是bx+a的估计值,所以y是E(Y)的估计值. 我们称yi为响应变量Y的观测值,通过经验回归方程得到的yi为预测值.为了研究回归模型的有效性,定义残差为ei=yi-yi,残差是随机误差的估计值,通过对残差的分析可判断回归模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面的工作称为残差分析.例如,对于右表中的第6个观测,父亲身高为172cm,其儿子身高的观测值为y=176(cm),预测值为96=0.839172+28.957=173.265(
14、cm),残差为176-173.265=2.735(cm).类似地,可以得到其他的残差,如右表所示.问题7:儿子身高与父亲身高的关系,运用残差分析所得的一元线性回归模型的有效性吗?残差图:作图时纵坐标 为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图观察表可以看到,残差有正有负,残差的绝对值最大是4.413.观察残差的散点图可以发现,残差比较均匀地分布在横轴的两边,说明残差比较符合一元线性回归模型的假定,是均值为0、方差为2的随机变量的观测值.可见,通过观察残差图可以直观判新模型是否满足一元线性回归模型的假设. 一般地,建立经验回归方程后,通常需要对模型刻画数
15、据的效果进行分析,借助残差分析还可以对模型进行改进,使我们能根据改进模型作出更符合实际的预测与决策。概(1) (2)(3) (4)问题8:观察以下四幅残差图,你认为哪一个残差满足一元线性回归模型中对随机误差的假定?根据一元线性回归模型中对随机误差的假定,残差应是均值为0、方差为2的随机变量的观测值.图(1)显示残差与观测时间有线性关系,应将时间变量纳入模型;图(2)显示残差与观测时间有非线性关系,应在模型中加入时间的非线性函数部分;图(3)说明残差的方差不是一个常数,随观测时间变大而变大;图(4)的残差比较均匀地集中在以横轴为对称轴的水平带状区域内.所以,只有图(4)满足一元线性回归模型对随机
展开阅读全文