人教A版高中数学必修三《7.1.1条件概率》教案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教A版高中数学必修三《7.1.1条件概率》教案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 7.1.1条件概率 人教 高中数学 必修 7.1 条件 概率 教案 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、7.1.1 条件概率 本节课选自2019人教A版高中数学选择性必修第三册,第七章随机变量及其分布列,本节课主本节课主要学习条件概率.学生已经学习了有关概率的一些基础知识,对一些简单的概率模型(如古典概型、几何概型)已经有所了解。条件概率是学生接触到的又一个全新的概率模型。一方面,它是对古典概型计算方法的巩固,另一方面,为后续研究独立事件打下良好基础。这一概念比较抽象,学生较难理解。遇到具体问题时,学生常因分不清是P(B|A)还是P(AB)而导致出错。基于此,在本节的教学中,应特别注意对于条件概率概念的生成,借助图示形象直观地展现条件概率概念的生成过程。 课程目标学科素养A.通过实例,了解条件概
2、率的概念;B.掌握求条件概率的两种方法;C.能利用条件概率公式解决一些简单的实际问题;D.通过条件概率的形成过程,体会由特殊到一般的思维方法.1.数学抽象:条件概率的概念 2.逻辑推理:条件概率公式的推导 3.数学运算:运用条件概率公式计算概率4.数学建模:将相关问题转化为条件概率重点:运用条件概率的公式解决简单的问题难点:条件概率的概念多媒体教学过程教学设计意图核心素养目标一、 问题导学 在必修“概率” 一章的学习中,我们遇到过求同一实验中两个事件A与B同时发生(积事件AB)的概率的问题,当事件A与B相互独立时,有P(AB)=P(A)P(B) 如果事件A与B不独立,如何表示积事件AB的概率呢
3、?下面我们从具体问题入手.二、 新知探究问题1 . 某个班级有45名学生,其中男生、女生的人数及团员的人数如表所示,在班级里随机选一人做代表,(1)选到男生的概率是多大?(2)如果已知选到的是团员,那么选到的是男生的概率是多大?团员非团员合计男生16925女生14620合计301545随机选择一人作代表,则样本空间𝛀包含45个等可能的样本点.用A表示事件“选到团员”, B表示事件“选到男生” ,根据表中的数据可以得出n()=45, n(A)=30, n(B)=25.(1)根据古典概型知识可知选到男生的概率P(B) =n(B)n()=2545=59.(2)“在选择团员的条件下,选
4、到男生”的概率就是“在事件A发生的条件下,事件B发生” 的概率,记为P(B|A).此时相当以A为样本空间来考虑B发生概率,而在新的样本空间中事件B就是积事件AB,包含了样本点数nAB=16.根据古典概型知识可知:P(B|A) =n(AB)n(A)=1630=815.问题2. 假定生男孩和生女孩是等可能的,现考虑有两个小孩的家庭,随机选一个家庭,那么(1)该家庭中两个小孩都是女孩的概率是多大?(2)如果已经知道这个家庭有女孩,那么两个小孩都是女孩的概率又是多大?观察两个小孩的性别,用b表示男孩,g表示女孩,则样本空间=bb,bg,gb,gg,且所有样本点是等可能的.用A表示事件“选择家庭中有女孩
5、” ,B表示事件“选择家庭中两个孩子都是女孩” ,A =bg,gb,gg,B=gg.(1) 根据古典概型知识可知,该家庭中两个小孩都是女孩的概率P(B) =n(B)n()=14.(2)“在选择的家庭有女孩的条件下,两个小孩都是女孩” 的概率就是在“事件A发生的条件下,事件B发生” 的概率,记为P(B|A) ,此时A成为样本空间,事件B就是积事件AB,根据古典概型知识可知P(B|A) =n(AB)n(A)=13.分析:求P(B|A)的一般思想ABABW因为已经知道事件A 必然发生,所以只需在A 发生的范围内考虑问题,即现在的样本空间为A.因为在事件A发生的情况下事件B 发生,等价于事件A 和事件
6、 B 同时发生,即AB发生.所以事件A 发生的条件下,事件B 发生的概率P(B|A) =n(AB)n(A). 为了把这个式子推广到一般情形,不妨记原来的样本空间为W,则有P(B|A) =n(AB)n(W)n(A)n(W)=P(AB)P(A). 一般地,当事件B发生的概率大于0时(即P(B)0),已知事件B发生的条件下事件A发生的概率,称为条件概率,记作P(B|A),而且P(B|A)=P(AB)P(A).问题1. 如何判断条件概率?题目中出现“在已知前提下(或条件下)”“在A发生的条件下”等关键词,表明这个前提已成立或条件已发生,此时通常涉及条件概率.问题2. P(B|A)与P(A|B)的区别是
7、什么?P(B|A)表示在事件A发生的条件下,B发生的概率.P(A|B)表示在事件B发生的条件下,A发生的概率.条件概率与事件独立性的关系探究1:在问题1和问题2中,都有P(B|A)P(B).一般地, P(B|A)与P(B)不一定相等。如果P(B|A)与P(B)相等,那么事件A与B应满足什么条件?直观上看,当事件A与B相互独立时,事件A发生与否不影响事件B发生的概率,这等价于P(B|A)=P(B)成立.事实上,若事件A与B相互独立,即PAB=PAPB,且PA0,则PBA=P(AB)PA=PAPBPA=PB;反之,若PBA=PB,且PA0,则PB=PABPAPAB=PAPB 探究2:对于任意两个事
8、件A与B,如果已知P(A)与P(B|A),如何计算P(AB)呢?由条件概率的定义,对任意两个事件A与B,若P(A)0,则P(AB)=P(A)P(B|A).我们称上式为概率的乘法公式(multiplication formula).条件概率的性质条件概率只是缩小了样本空间,因此条件概率同样具有概率的性质.设P(A)0,则(1)P(|A)=1;(2)如果B和C是两个互斥事件,则P(BUC |A)=P(B | A)+P(C | A);(3)设B和B互为对立事件,则P( B|A)=1- P(B|A).三、典例解析例1.在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,抽出的题不再放回.求:
9、(1)第1次抽到代数题且第2次抽到几何题的概率;(2)在第1次抽到代数题的条件下,第2次抽到几何题的概率.分析:如果把“第1次抽到代数题”和“第2次抽到几何题”作为两个事件,那么问题(1)就是积事件的概率,问题(2)就是条件概率.可以先求积事件的概率,再用条件概率公式求条件概率;也可以先求条件概率,再用乘法公式求积事件的概率.解法1:设A=“第1次抽到代数题”,B=“第2次抽到几何题”。(1)“第1次抽到代数题且第2次抽到几何题”就是事件AB.从5道试题中每次不放回地随机抽取2道,试验的样本空间包含20个等可能的样本点,即n=A52=54=20。因为n(AB)= A31A21=32=6P(AB
展开阅读全文