《计量经济分析方法与建模》第二版课件-第08章--对数极大似然估计.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《计量经济分析方法与建模》第二版课件-第08章--对数极大似然估计.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量经济分析方法与建模 计量 经济 分析 方法 建模 第二 课件 08 _ 对数 极大 估计
- 资源描述:
-
1、1 极大似然估计法极大似然估计法(maximum likelihood,ML),是不同,是不同于最小二乘法的另一种参数估计方法,是从极大似然原理于最小二乘法的另一种参数估计方法,是从极大似然原理发展起来的其他估计方法的基础。虽然其应用没有最小二发展起来的其他估计方法的基础。虽然其应用没有最小二乘法普遍,但在计量经济学理论上占据很重要的地位,因乘法普遍,但在计量经济学理论上占据很重要的地位,因为极大似然原理比最小二乘原理更本质地揭示了通过样本为极大似然原理比最小二乘原理更本质地揭示了通过样本估计母体参数的内在机理,计量经济学理论的发展更多的估计母体参数的内在机理,计量经济学理论的发展更多的是以极
2、大似然估计原理为基础的,对于一些特殊的计量经是以极大似然估计原理为基础的,对于一些特殊的计量经济学模型,只有极大似然方法才是很成功的估计方法。济学模型,只有极大似然方法才是很成功的估计方法。2 EViews包含了一些常用方法,如最小二乘法、非线性包含了一些常用方法,如最小二乘法、非线性最小二乘法、加权最小二乘法、最小二乘法、加权最小二乘法、TSLS、GMM、ARIMA、ARCH、GARCH等方法,这些方法可以解决可能遇到的大等方法,这些方法可以解决可能遇到的大多数估计问题。但是,我们在研究中也可能会碰到一些不多数估计问题。但是,我们在研究中也可能会碰到一些不在上述之列的特殊的模型,这些模型可能
3、是现存方法的一在上述之列的特殊的模型,这些模型可能是现存方法的一个扩展,也可能是一类全新的问题。个扩展,也可能是一类全新的问题。为了能解决这些特殊的问题,为了能解决这些特殊的问题,EViews提供了提供了这一工具来估计各种不同类型的模型。对数这一工具来估计各种不同类型的模型。对数极大似然估计对象提供了一个一般的,开放的工具,可以极大似然估计对象提供了一个一般的,开放的工具,可以通过这个工具极大化相关参数的似然函数对一大类模型进通过这个工具极大化相关参数的似然函数对一大类模型进行估计。行估计。3 使用对数极大似然估计对象估计时,我们用使用对数极大似然估计对象估计时,我们用EViews的序列生成器
4、,将样本中各个观测值的对数似然贡献描述的序列生成器,将样本中各个观测值的对数似然贡献描述为一个未知参数的函数。可以给出似然函数中一个或多个为一个未知参数的函数。可以给出似然函数中一个或多个参数的解析微分,也可以让参数的解析微分,也可以让EViews自动计算数值微分。自动计算数值微分。EViews将寻找使得指定的似然函数最大化的参数值,并将寻找使得指定的似然函数最大化的参数值,并给出这些参数估计的估计标准差。给出这些参数估计的估计标准差。在本章,我们将详细论述对数极大似然估计对象,在本章,我们将详细论述对数极大似然估计对象,说明其一般特征。并给出了一些可以使用该方法的具体的说明其一般特征。并给出
5、了一些可以使用该方法的具体的例子。例子。4 设总体的概率密度函数为设总体的概率密度函数为P,其类型是已知的,但含有未其类型是已知的,但含有未知参数(向量)知参数(向量)。我们的目的就是依据从该总体抽得的随机我们的目的就是依据从该总体抽得的随机样本样本 y1,y2,yT,寻求对,寻求对 的估计。的估计。观测值观测值 y1,y2,yT 的联合密度函数被给定为的联合密度函数被给定为 (8.1.1)其中:其中:y=(y1,y2,yT)。将这一联合密度函数视为参数。将这一联合密度函数视为参数 的函数,称为样本的似然函数(的函数,称为样本的似然函数(likelihood function)。)。TttyP
6、L1)();(y5 极大似然原理就是寻求参数的估计值极大似然原理就是寻求参数的估计值 ,使得所,使得所给样本值的概率密度(即似然函数)的值在这个参数给样本值的概率密度(即似然函数)的值在这个参数值之下,达到最大。在当前的情形下,就是寻求值之下,达到最大。在当前的情形下,就是寻求 的的估计值,使得似然函数估计值,使得似然函数 L(y;)相对于给定的观测值相对于给定的观测值 y1,y2,yT 而言达到最大值,而言达到最大值,就被称为极大似然估计就被称为极大似然估计量。量。6 在在 L(y;)关于关于 i(i=1,2,n,n是未知参数的个数)是未知参数的个数)的偏导数存在时,要使的偏导数存在时,要使
7、 L(y;)取最大值取最大值,必须满足必须满足,i=1,2,n (8.1.2)由上式可解得由上式可解得 n 1 向量向量 的极大似然估计值的极大似然估计值 ,而式,而式(8.1.2)也被称为似然函数。也被称为似然函数。0);(yLi 7 因为因为 L(y;)与与 lnL(y;)在同一点处取极值,所在同一点处取极值,所以也可以由以也可以由,i=1,2,n(8.1.3)求得,因为对数可将乘积变成求和,所以,式求得,因为对数可将乘积变成求和,所以,式(8.1.3)往往往往比直接使用式比直接使用式(8.1.2)来得方便。式来得方便。式(8.1.3)也被称为对数似也被称为对数似然函数。然函数。0);(l
8、nyLi8 考虑多元线性回归模型的一般形式考虑多元线性回归模型的一般形式 ,t=1,2,T(8.1.4)其中其中 k 是解释变量个数,是解释变量个数,T 是观测值个数,随机扰动项是观测值个数,随机扰动项 ,那么那么 yt 服从如下的正态分布:服从如下的正态分布:其中其中(8.1.5)tktktttuxxxy22110tu),0(2Nty),(2tNktktttxxx221109 y 的随机抽取的的随机抽取的 T 个样本观测值的联合概率函数为个样本观测值的联合概率函数为 (8.1.6)这就是变量这就是变量y的似然函数,未知参数向量的似然函数,未知参数向量=1,2,k,2。对似然函数求极大值和对数
9、似然函数求极大值是等价对似然函数求极大值和对数似然函数求极大值是等价的,式的,式(8.1.6)的的为:为:(8.1.7)TtttyTTTttTeyPyyyPL122)(2121212)2(1)(),(),(TtttTtttyyTL122212222)(21)2ln(21)(21)2ln(2),(ln10 注意,可以将对数似然函数写成注意,可以将对数似然函数写成 t 时刻所有观测值的时刻所有观测值的对数似然贡献和的形式,对数似然贡献和的形式,(8.1.8)这里对数似然的单个贡献(用小写字母表示)由下面这里对数似然的单个贡献(用小写字母表示)由下面的式子给出:的式子给出:(8.1.9)),(),(
10、ln212TttlL2222)(21)2ln(21),(tttylTt,2,111 式(式(8.1.7)也可用标准正态分布的密度函数)也可用标准正态分布的密度函数 表示表示 (8.1.10)式中式中 为为 (8.1.11)这里对数似然函数每个观测值的贡献式这里对数似然函数每个观测值的贡献式(8.1.9)又可以由下面的又可以由下面的式子给出:式子给出:(8.1.12)TtttTtyTL122122)(21)ln(21)2ln(2),(lnTttty12)ln(21)(lnTtttzTz1221)2ln(2)(lntttyz)ln(21ln),(2tttylTt,2,112 用对数极大似然估计来估
11、计一个模型,主要的工作是用对数极大似然估计来估计一个模型,主要的工作是建立用来求解似然函数的说明文本。用建立用来求解似然函数的说明文本。用EViews指定对数指定对数极大似然函数的说明是很容易的,因为似然函数的说明只极大似然函数的说明是很容易的,因为似然函数的说明只是一系列对序列的赋值语句,这些赋值语句在极大化的过是一系列对序列的赋值语句,这些赋值语句在极大化的过程中被反复的计算。我们所要做的只是写下一组语句,在程中被反复的计算。我们所要做的只是写下一组语句,在计算时,这些语句将描述一个包含每个观测值对似然函数计算时,这些语句将描述一个包含每个观测值对似然函数贡献的序列。贡献的序列。13 注意
12、到,我们能将对数似然函数写成所有观测值注意到,我们能将对数似然函数写成所有观测值 t 的的的形式,的形式,这里这里由下面的式子给出:由下面的式子给出:),(),(ln212TttlL2222)(21)2ln(21),(tttylTt,2,114 以只含一个解释变量的一元线性回归方程为例以只含一个解释变量的一元线性回归方程为例 ,t=1,2,T 假定知道模型参数的真实值,并且想用假定知道模型参数的真实值,并且想用EViews产生产生一个包含每个观测值的贡献的序列。一个包含每个观测值的贡献的序列。tttuxy110),0(2Nut2222)(21)2ln(21),(tttylTt,2,115 未知
13、参数向量未知参数向量 =0,1,2,可以将参数初值赋给系数向可以将参数初值赋给系数向量的量的c(1)到到c(3)元素,然后把下面的赋值语句作为元素,然后把下面的赋值语句作为EViews的命的命令或程序来执行。令或程序来执行。Series res=y-c(1)-c(2)*x Series var=c(3)Series logL1=-log(2*3.14159*var)/2-(res2/var)/2 前面两行语句描述了用来存储计算时的中间结果的序列。前面两行语句描述了用来存储计算时的中间结果的序列。第一个语句创建了第一个语句创建了,而第二个语句创建了,而第二个语句创建了。而序列。而序列包含了包含了
14、的集合。的集合。2222)(21)2ln(21),(tttyl16 下面考虑下面考虑2个变量的例子:个变量的例子:这里,这里,y,x,w 是观测序列,而是观测序列,而 =1,2,3,2是模型的参数。是模型的参数。有有T个观测值的样本的对数似然函数可以写成:个观测值的样本的对数似然函数可以写成:这里,这里,是标准正态分布的密度函数。是标准正态分布的密度函数。),0(2321NuuwxytttttTtTttttwxyTL1122321222)()log(21)2log(2),(logTttttwxy12321)log(21(log17 将这一例子的对数极大似然函数过程写成下面的赋值语将这一例子的对
15、数极大似然函数过程写成下面的赋值语句:句:Series res=y-c(1)-c(2)*x-c(3)*w Series var=c(4)Series logL1=log(dnorm(res/sqrt(var)-log(var)/2 前面两行语句创建了残差序列前面两行语句创建了残差序列res和方差序列和方差序列var,参数,参数c(1),c(2),c(3)代表了回归系数代表了回归系数 1,2,3,c(4)代表了代表了 2,序列序列logL1包含了每个观测值的对数似然贡献的集合。包含了每个观测值的对数似然贡献的集合。)log(21log),(2321ttttwxyl18 下面考虑稍复杂的例子,假设
16、数据是由条件异方差回归模下面考虑稍复杂的例子,假设数据是由条件异方差回归模型生成的:型生成的:这里,这里,x,y,w 是观测序列,而是观测序列,而=1,2,3,2,是模型的参是模型的参数。有数。有T个观测值的样本的对数似然函数可以写成:个观测值的样本的对数似然函数可以写成:这里,这里,是标准正态分布的密度函数。是标准正态分布的密度函数。Tttttttwwwxy122/321)log(21(logTtTttttttwwxywTL1122321222)()log(21)2log(2),(log),0(2321ttttttwNuuwxyTt,2,119 将这一例子的对数极大似然函数过程写成下面的赋值
17、语句:将这一例子的对数极大似然函数过程写成下面的赋值语句:Series res=y-c(1)-c(2)*x-c(3)*w Series var=c(4)*wc(5)Series logL1=log(dnorm(res/sqrt(var)-log(var)/2 前面两行语句创建了残差序列前面两行语句创建了残差序列res和方差序列和方差序列var,参数,参数c(1),c(2),c(3)代表回归系数代表回归系数 1,2,3,c(4)代表代表 2,c(5)代表代表 ,序,序列列logL1包含了每个观测值的对数似然贡献的集合。包含了每个观测值的对数似然贡献的集合。)log(21log),(22/321t
18、tttttwwwxylTt,2,120 现在假定不知道模型参数的真实值,而想使用数据现在假定不知道模型参数的真实值,而想使用数据来估计它。参数的极大似然估计被定义为:使得样本中来估计它。参数的极大似然估计被定义为:使得样本中所有随机抽取的一组观测值的联合概率密度,即似然函所有随机抽取的一组观测值的联合概率密度,即似然函数取最大值的那组参数值。数取最大值的那组参数值。而对数极大似然方法使得寻找这些极大似然估计变而对数极大似然方法使得寻找这些极大似然估计变得容易了。只需创建一个对数似然对象,把上面的赋值得容易了。只需创建一个对数似然对象,把上面的赋值语句输入到语句输入到logL的说明窗口,然后让的
19、说明窗口,然后让EViews来估计这个来估计这个模型。模型。21 在输入赋值语句时,只需对上面的文本做两处微小的在输入赋值语句时,只需对上面的文本做两处微小的改动就可以了。首先,改动就可以了。首先,(因(因为似然说明暗含了假定序列是当前的)。第二,为似然说明暗含了假定序列是当前的)。第二,(关键字(关键字为包含为包含)。)。这样,要在这样,要在logL说明窗口输入下面的内容:说明窗口输入下面的内容:logL logl res=y-c(1)-c(2)*x-c(3)*w var=c(4)*wc(5)logl=log(dnorm(res/sqrt(var)-log(var)/2 对数似然函数的第一行
20、,对数似然函数的第一行,logL logl,告诉,告诉EViews用用logl序列来存储似然贡献。余下的行定义了中间结果的计算序列来存储似然贡献。余下的行定义了中间结果的计算和实际的似然贡献的计算。和实际的似然贡献的计算。22 当用当用EViews估计模型参数时,它将对不同参数值估计模型参数时,它将对不同参数值重复执行说明中的赋值语句,使用迭代法来求使得对重复执行说明中的赋值语句,使用迭代法来求使得对数似然贡献最大的一组参数值。当数似然贡献最大的一组参数值。当EViews再不能提高再不能提高全部似然贡献时,它将停止迭代并在估计输出中报告全部似然贡献时,它将停止迭代并在估计输出中报告最终参数值和
21、估计标准差。最终参数值和估计标准差。本章下面的部分将更详细地讨论使用似然方法说本章下面的部分将更详细地讨论使用似然方法说明,估计和检验时要遵循的规则。明,估计和检验时要遵循的规则。23 要创建一个似然对象,选择要创建一个似然对象,选择Objects/New Object./LogL或者在命令窗口输入或者在命令窗口输入“logL”。似然窗口将打开一个空。似然窗口将打开一个空白说明视图。说明视图是一个文本窗口,在这个窗口里可白说明视图。说明视图是一个文本窗口,在这个窗口里可以输入描述统计模型的说明语句,还可以设置控制估计程以输入描述统计模型的说明语句,还可以设置控制估计程序各个方面的选项。序各个方
22、面的选项。24 正如上节中所描述的那样,似然说明的主线是一系正如上节中所描述的那样,似然说明的主线是一系列赋值语句,在计算时,这些赋值语句将产生一个包含列赋值语句,在计算时,这些赋值语句将产生一个包含样本中每个观测值的对数似然贡献的序列。赋值语句的样本中每个观测值的对数似然贡献的序列。赋值语句的多少可以自己决定。多少可以自己决定。25 每个似然说明都必须包含一个控制语句,该语句命名了每个似然说明都必须包含一个控制语句,该语句命名了保存似然贡献的序列。语句的格式为:保存似然贡献的序列。语句的格式为:这里这里logL是关键字是关键字,series_name是保存似然贡献的序列的是保存似然贡献的序列
23、的名字,可以写在似然说明的任何位置。名字,可以写在似然说明的任何位置。例如,对于一元线性回归方程的似然说明来说,第一行:例如,对于一元线性回归方程的似然说明来说,第一行:logL logl是似然贡献的序列的说明。当对模型进行计算时,是似然贡献的序列的说明。当对模型进行计算时,EViews将在现有参数值下执行每个赋值语句,并将结果保存将在现有参数值下执行每个赋值语句,并将结果保存到指定名称的序列里。如果序列不存在,系统将自动创建,到指定名称的序列里。如果序列不存在,系统将自动创建,如果已经存在,系统将使用现有的序列,并覆盖序列原来的如果已经存在,系统将使用现有的序列,并覆盖序列原来的内容。内容。
24、26 如果想在估计完成后删除说明中的一个或多个序列,可如果想在估计完成后删除说明中的一个或多个序列,可以使用以使用temp语句:语句:这个语句告诉这个语句告诉EViews在对说明的计算完成后,删除列表在对说明的计算完成后,删除列表中的序列。如果在中的序列。如果在logL中创建了许多中间结果,又不愿意工中创建了许多中间结果,又不愿意工作文件因包含这些结果的序列而弄得混乱的话,删除这些序作文件因包含这些结果的序列而弄得混乱的话,删除这些序列将是很有用的。例如,图列将是很有用的。例如,图8.2中的最后一行语句就是命令中的最后一行语句就是命令EViews在估计结束后,删除估计产生的中间序列在估计结束后
25、,删除估计产生的中间序列res、var和和logl。这里需要强调一点,在似然说明的文本中可以加入说明这里需要强调一点,在似然说明的文本中可以加入说明语句,说明语句的前面加上撇号语句,说明语句的前面加上撇号“”,则这个语句将不被执,则这个语句将不被执行。行。27 在上面的例子中,我们使用了系数在上面的例子中,我们使用了系数c(1)到到c(5)作为未知作为未知参数的名称。更一般的,出现在说明中一个已命名的系数向参数的名称。更一般的,出现在说明中一个已命名的系数向量中的每一个元素都将被视为待估参数。量中的每一个元素都将被视为待估参数。例如创建例如创建2个命名个命名的系数向量:的系数向量:beta(2
展开阅读全文