(2022高中数学精品教案)3.2.1单调性与最大(小)值(1).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(2022高中数学精品教案)3.2.1单调性与最大(小)值(1).docx》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022高中数学精品教案 2022 高中数学 精品 教案 3.2 调性 最大 下载 _其他_数学_高中
- 资源描述:
-
1、3.2.1 单调性与最大(小)值函数的单调性与最大(小)值系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的
2、救开结合思想将贯穿于我们整个高中数学教学。课程目标学科素养A.理解增函数、减函数、单调区间、单调性概念;B.掌握增(减)函数的证明与判断;C.能利用单调性求函数的最大(小)值;D.学会运用函数图象理解和研究函数的性质;1.数学抽象:函数的单调性;2.逻辑推理:证明函数的单调性;3.数学运算:求函数的最大(小)值;4.直观想象:由函数的图象研究函数的单调性;5.数学模型:由实际问题构造合理的函数模型。1.教学重点:函数单调性的概念,函数的最值;2.教学难点:证明函数的单调性,求函数的最值。多媒体教学过程教学设计意图核心素养目标一、 情景引入1. 观察这些函数图像,你能说说他们分别反映了相应函数的
3、哪些特征吗?2、它们分别反映了相应函数有什么变化规律?二、 探索新知探究一 单调性1、思考:如何利用函数解析式描述“随着x的增大,相应的f(x)随着增大?”【答案】图象在区间 上 逐渐上升,在内随着x的增大,y也增大。对于区间内任意,当时,都有。这是,就说函数在区间 上是增函数.2、你能类似地描述在区间上是减函数吗?【答案】在区间内任取,得到,当时,都有。这时,我们就说函数 在区间上是这减函数.3、思考:函数,各有怎样的单调性 ?单调性概念:对于定义域I内某个区间D上的任意两个自变量的值,当时,都有 。就说函数在区间D上是增函数.对于定义域I内某个区间D上的任意两个自变量的值,当时,都有 。就
展开阅读全文