(高中数学竞赛专题大全) 竞赛专题14 数学归纳法(50题竞赛真题强化训练)试卷.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(高中数学竞赛专题大全) 竞赛专题14 数学归纳法(50题竞赛真题强化训练)试卷.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学竞赛专题大全 【高中数学竞赛专题大全】 竞赛专题14 数学归纳法50题竞赛真题强化训练试卷 高中数学 竞赛 专题 大全 14 数学 归纳法 50 强化 训练 试卷 下载 _考试试卷_数学_高中
- 资源描述:
-
1、【高中数学竞赛专题大全】 竞赛专题14 数学归纳法(50题竞赛真题强化训练)一、解答题1(2021全国高三竞赛)已知.证明:当时,.2(2019全国高三竞赛)设.证明:.3(2021全国高三竞赛)数列满足:,求的通项公式4(2019全国高三竞赛)若为某一整系数多项式的根,则称为“代数数”.否则,称为“超越数”,证明:(1)可数个可数集的并为可数集;(2)存在超越数.5(2019全国高三竞赛)设数列满足,试求6(2019全国高三竞赛)已知数列满足, .证明:7(2019全国高三竞赛)已知实数数列满足,.其中,表示不超过实数的最大整数.求.8(2019全国高三竞赛)给定正整数,非负整数满足对均有,
2、其中,表示中大于0的数的个数(规定).试求的最大值.9(2019全国高三竞赛)设为给定的正整数.求所有正整数,使得存在,且恰有个不同的质因子.10(2019全国高三竞赛)设,已知个正实数,使对任意、,有,证明:11(2019全国高三竞赛)已知各项均不小于1的数列满足:,试求:(1)数列的通项公式;(2)的值.12(2019全国高三竞赛)数列定义如下:对任何正整数,. 证明:存在无数个的取值,使对一切正整数,有.13(2019全国高三竞赛),给定,.证明:对任意、,.其中,表示与的最大公约数.14(2021全国高三竞赛)求所有的函数,满足,且对于所有整数,有.15(2019全国高三竞赛)求证:数
3、列的每一项都是整数,但都不是3的倍数.16(2019全国高三竞赛)设数列满足,.证明:对任意的, .17(2018四川高三竞赛)已知数列满足:,若对任意正整数,都有,求实数的最大值.18(2018全国高三竞赛)一束直线的每条均过xOy平面内的抛物线的焦点,与抛物线C交于点、.若的斜率为1,的斜率为,求的解析式.19(2018广西高三竞赛)设为非负数,求证:.20(2018全国高三竞赛)设为正整数数列,且对任意满足;的正整数m、n,存在正整数,使得试对每一个固定的,求的最大值21(2021全国高三竞赛)给定正整数m、k,有n个选手参加一次测试,该测试由m个项目构成,每个项目完成后都会取得一个评分
4、,没有两个人在一个项目取得相同的评分求n的最小值,使得总存在k个选手,在第j个项目中的k个得分要么单调递增,要么单调递减,22(2021全国高三竞赛)已知数列满足(1)求证:(2)是否存在实数,使得,若存在求出的值;若不存在请说明理由23(2021全国高三竞赛)设和为两组复数,满足:求证:存在数组(其中),使得24(2021全国高三竞赛)已知n个非负实数和为1求证:25(2021全国高三竞赛)设数列满足.求证:.26(2021全国高三竞赛)给定正整数求最大的实数使得对任意正实数恒成立,其中27(2021全国高三竞赛)设n为不小于3的正整数,在正n边形中,选取一些对角线,满足其中的任两条对角线若
展开阅读全文