书签 分享 收藏 举报 版权申诉 / 21
上传文档赚钱

类型等差数列前N项和-公开课课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3177244
  • 上传时间:2022-07-28
  • 格式:PPT
  • 页数:21
  • 大小:1.11MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《等差数列前N项和-公开课课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    等差数列 公开 课件
    资源描述:

    1、数学巨人高高斯斯计算:1+2+3+4+5+6+98+99+100=?问题呈现 泰姬陵坐落于印度古都阿格,是十七泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵寝以宝石镶饰,图界七大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。案之细致令人叫绝。传说陵寝中有一个三角形图案,以相传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有同大小的圆宝石镶饰而成,共有100100层层(见左图),奢

    2、靡之程度,可见一斑。(见左图),奢靡之程度,可见一斑。你知道这个图案一共花了多少宝石吗?你知道这个图案一共花了多少宝石吗?探究发现问题1:图案中,第1层到第21层一共有多少颗宝石?这是求奇数个项和的问题,不能简单模仿偶数个项求和的办法,需要把中间项11看成首、尾两项1和21的等差中项。通过前后比较得出认识:高斯“首尾配对”的算法还得分奇、偶个项的情况求和。进而提出有无简单的方法?探究发现问题1:图案中,第1层到第21层一共有多少颗宝石?借助几何图形之直观性,引导学生使用熟悉的几何方法:把“全等三角形”倒置,与原图补成平行四边形。探究发现问题1:图案中,第1层到第21层一共有多少颗宝石?1232

    3、1212019121(121)212s获得算法:探究发现 从求确定的前n个正整数之和到求一般项数的前n个正整数之和,旨在让学生体验“逆序相加求和”这一算法的合理性,从心理上完成对“首尾配对求和”算法的改进。123(1)(1)(2)212(1)(1)(1)(1)2nnnnnsnnsnnnsnnnn ns 问题2:求1到n的正整数之和。123(1)nsnn 即探究发现问题3:?nnan如何求等差数列的前 项和S1231211()2nnnnnnnnsaaaasaaaan aas由于前面的铺垫,学生容易得出如下过程:追问学生:为什么在等差数列中有211,nnaaaa图形直观等差数列的性质,.)mnpq

    4、mnpqaaaa(如果那么111()1)nSaadand(()(1)nnnnSaadand)(21nnaanS1()12nnn aaS公式dnaan)1(11(1)22nn nSnad公式探究发现问题4:?nnan如何求等差数列的前 项和Sa1ann2)n a(a1n1nsdnnnasn2)1(21a1a1(n-1)dnn公式记忆方法公式记忆方法:公式应用750080008500900095001000010500例某长跑运动员天里每天的训练量(单位:m)是:这位长跑运动员天共跑了多少米?本例提供了许多数据信息,学生可以从首项、尾项、项数出发,使用公式1,也可以从首项、公差、项数出发,使用公式

    5、2求和。达到学生熟悉公式的要素与结构的教学目的。通过两种方法的比较,引导学生应该根据信息选择适当的公式,以便于计算。选用公式选用公式变式题组变式题组根据下列各题条件,求相应等差数列的前n项和:115,95,10naan、12100,2,50adn、1314.5,0.7,32nada、公式应用变用公式变用公式例等差数列10,6,2,2,的前多少项的和为54?本例已知首项,前n项和、并且可以求出公差,利用公式2求项数。事实上,在两个求和公式中各包含四个元素,从方程的角度,知三必能求余一。120,54,999,.nnnaaasn在等差数列中,求变式练习1.an?;从函数的角度怎样理解?an=4n-1

    6、4Sn=2n2-12n2.Sn呢?等差数列an:10,6,2,2,的前多少项的和为54?nSnO6四、Sn的深入认识nanOan=4n-14Sn=2n2-12n公式应用知三求二知三求二 本例是使用等差数列的求和公式和通项公式求未知元。可以使用公式2,先求出首项,再使用通项公式求尾项。也可以使用公式1和通项公式,联列方程组求解。事实上,在求和公式、通项公式中共有首项、公差、项数、尾项、前n项和五个元素,如果已知其中三个,联列方程组,就可求其余二个。例 120,37,629,.nnnansaa在等差数列中,已知d求 及公式应用横用公式横用公式512156136,;220,aaaaa21611、已知求s、已知求s例4 在等差数列 中 na这一题组是对等差数列的概念、性质以及求和公式的横向综合应用,培养学生综合解决问题的能力。利用sn,判断一个数列是否为等差数列 例5 根据数列an前n项和公式,判断下列数列 是否为等差数列.(1)sn=2 n2 n (2)sn=2 n2 n+1课堂小结回顾从特殊到一般的研究方法;体会等差数列的基本元表示方法,逆序相加的算法,及数形结合的数学思想;掌握等差数列的两个求和公式及简单应用。课外探索v已知等差数列16,14,12,10,(1)前多少项的和为72?(2)前多少项的和为0?(3)前多少项的和最大?谢谢!谢谢!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:等差数列前N项和-公开课课件.ppt
    链接地址:https://www.163wenku.com/p-3177244.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库